找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Learning; Propositionalization Nada Lavra?,Vid Podpe?an,Marko Robnik-?ikonja Book 2021 Springer Nature Switzerland AG 2021 e

[復(fù)制鏈接]
查看: 41413|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:37:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Representation Learning
副標(biāo)題Propositionalization
編輯Nada Lavra?,Vid Podpe?an,Marko Robnik-?ikonja
視頻videohttp://file.papertrans.cn/828/827393/827393.mp4
概述Representation learning for cutting-edge machine learning – the benefit is a unifying approach to data fusion and transformation into compact tabular format used in standard learners and modern deep n
圖書封面Titlebook: Representation Learning; Propositionalization Nada Lavra?,Vid Podpe?an,Marko Robnik-?ikonja Book 2021 Springer Nature Switzerland AG 2021 e
描述This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
出版日期Book 2021
關(guān)鍵詞embeddings; data fusion; heterogeneous data mining; relational data mining; feature construction; proposi
版次1
doihttps://doi.org/10.1007/978-3-030-68817-2
isbn_softcover978-3-030-68819-6
isbn_ebook978-3-030-68817-2
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Representation Learning影響因子(影響力)




書目名稱Representation Learning影響因子(影響力)學(xué)科排名




書目名稱Representation Learning網(wǎng)絡(luò)公開度




書目名稱Representation Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Representation Learning被引頻次




書目名稱Representation Learning被引頻次學(xué)科排名




書目名稱Representation Learning年度引用




書目名稱Representation Learning年度引用學(xué)科排名




書目名稱Representation Learning讀者反饋




書目名稱Representation Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:40 | 只看該作者
Nada Lavra?,Vid Podpe?an,Marko Robnik-?ikonja the structural build-up by means of a rapid penetration test and a newly proposed modified cone geometry. These tests enable to realistically describe the material behaviour of new, environmentally friendly 3D printable mixtures with coarse aggregates. The results attained provide a foundation for
板凳
發(fā)表于 2025-3-22 01:10:59 | 只看該作者
地板
發(fā)表于 2025-3-22 05:42:36 | 只看該作者
Graph and Heterogeneous Network Transformations,s, and selected approaches to embedding heterogeneous information networks. We present a method for propositionalizing text enriched heterogeneous information networks and a method for heterogeneous network decomposition in Sect. 5.3. Ontology transformations for semantic data mining are presented i
5#
發(fā)表于 2025-3-22 12:26:06 | 只看該作者
Book 2021raph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
6#
發(fā)表于 2025-3-22 15:49:01 | 只看該作者
ht using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.978-3-030-68819-6978-3-030-68817-2
7#
發(fā)表于 2025-3-22 19:14:23 | 只看該作者
t tabular format used in standard learners and modern deep nThis monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity
8#
發(fā)表于 2025-3-23 00:47:45 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:00 | 只看該作者
10#
發(fā)表于 2025-3-23 06:53:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正宁县| 嘉峪关市| 九台市| 越西县| 沅陵县| 龙岩市| 毕节市| 泸溪县| 嘉峪关市| 钦州市| 邵武市| 宣恩县| 论坛| 塔城市| 崇仁县| 吴旗县| 屯门区| 突泉县| 马尔康县| 高阳县| 卢龙县| 天峻县| 始兴县| 上饶市| 沙河市| 太谷县| 旬邑县| 贞丰县| 东台市| 光山县| 龙胜| 杭州市| 南城县| 思南县| 文安县| 农安县| 游戏| 松桃| 梁河县| 久治县| 凤冈县|