找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Replication of Chaos in Neural Networks, Economics and Physics; Marat Akhmet,Mehmet Onur Fen Book 2016 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: Coenzyme
21#
發(fā)表于 2025-3-25 05:58:56 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:59 | 只看該作者
Chaos Extension in Hyperbolic Systems,Devaney and Li–Yorke is taken into account for unidirectionally coupled systems. The rigorously proved results are supported by simulations. A method for controlling the extended chaos is also presented.
23#
發(fā)表于 2025-3-25 14:22:37 | 只看該作者
24#
發(fā)表于 2025-3-25 17:17:40 | 只看該作者
25#
發(fā)表于 2025-3-25 21:41:33 | 只看該作者
Economic Models with Exogenous Continuous/Discrete Shocks,In this section, we investigate the generation of chaos in economic models with equilibria through exogenous shocks. The perturbation is formulated as a pulse function where either values or instants of discontinuity are chaotically behaved. We provide a rigorous proof of the existence of chaos in the perturbed model.
26#
發(fā)表于 2025-3-26 01:00:04 | 只看該作者
Chaos by Neural Networks,Interests of researchers to neural networks originate, first of all, from the fact that principles of functioning of neural networks are based on well-known biological processes about the methods of information processing by the brain.
27#
發(fā)表于 2025-3-26 04:31:55 | 只看該作者
28#
發(fā)表于 2025-3-26 08:34:48 | 只看該作者
Marat Akhmet,Mehmet Onur FenProvides precise definitions of continuous chaos with subsequent theorems on replication of deterministic chaos.Explains how chaos can be extended through connections in collectives of differential an
29#
發(fā)表于 2025-3-26 14:50:39 | 只看該作者
30#
發(fā)表于 2025-3-26 19:38:41 | 只看該作者
Replication of Chaos in Neural Networks, Economics and Physics978-3-662-47500-3Series ISSN 1867-8440 Series E-ISSN 1867-8459
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广灵县| 乌兰县| 广汉市| 安西县| 勃利县| 晴隆县| 文登市| 沧源| 浑源县| 会同县| 漠河县| 五莲县| 浦北县| 扎兰屯市| 固阳县| 山丹县| 汕尾市| 九寨沟县| 藁城市| 甘孜县| 颍上县| 额尔古纳市| 大悟县| 博客| 永嘉县| 新建县| 文昌市| 花莲县| 富裕县| 汶川县| 高邑县| 莒南县| 宜兴市| 南靖县| 长兴县| 清河县| 绥滨县| 疏附县| 建昌县| 缙云县| 西乡县|