找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Renormalization Theory; Proceedings of the N G. Velo,A. S. Wightman Conference proceedings 1976 D. Reidel Publishing Company, Dordrecht, Ho

[復(fù)制鏈接]
樓主: negation
51#
發(fā)表于 2025-3-30 11:43:38 | 只看該作者
Joel S. Feldmanlassischen Differentialgeometrie. Das Problem ist wichtig für die Kartographie: jede Seite eines Atlas ist eine Abbildung eines Teils der Erd(kugel)oberfl?che in die Ebene. Man wei?, da? es keine l?ng entreuen Atlanten geben kann; hingegen gibt es sehr wohl winkeltreue Atlanten (z.B. durch stereogra
52#
發(fā)表于 2025-3-30 15:28:25 | 只看該作者
BPHZ Renormalization,Composite fields — local, covariant fields which are formally products of the “elementary” fields of a given theory — have played an important role in the theoretical developments of recent years, and promise to do so for many years to come.
53#
發(fā)表于 2025-3-30 18:12:22 | 只看該作者
The Power Counting Theorem for Feynman Integrals with Massless Propagators,Dyson’s power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg’s ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are necessary and sufficient for the absolute convergence of Euclidean Feynman integrals.
54#
發(fā)表于 2025-3-30 21:43:25 | 只看該作者
Some Results on Dimensional Renormalization,In this lecture [1] we will give a definition of dimensionally regularized Feynman amplitudes and rules for the treatment of covariants (e.g. spin polynomials) which are quite different in spirit[2] from the ones given by Speer, but give equivalent results.
55#
發(fā)表于 2025-3-31 01:32:05 | 只看該作者
,Existence of Green’s Functions in Perturbative Q. E. D.,The purpose of this lecture is to report on some work, done in collaboration with P. Blanchard [1], which shows how, in the framework developped by H. Epstein and V. Glaser [2] one can prove the existence of Green’s functions in quantum electrodynamics (Q. E. D.).
56#
發(fā)表于 2025-3-31 05:28:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江山市| 乃东县| 侯马市| 庄浪县| 荆门市| 托里县| 武山县| 历史| 岱山县| 渝中区| 赤水市| 秭归县| 会东县| 象山县| 无极县| 全州县| 高雄县| 苍溪县| 平和县| 浪卡子县| 万盛区| 车致| 平定县| 庆云县| 吉隆县| 土默特左旗| 丰城市| 石渠县| 凤冈县| 新泰市| 博罗县| 滨州市| 中江县| 德江县| 丹棱县| 屏山县| 林州市| 巩义市| 平度市| 巩留县| 道孚县|