找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Renormalization Group Analysis of Nonequilibrium Phase Transitions in Driven Disordered Systems; Taiki Haga Book 2019 Springer Nature Sing

[復制鏈接]
樓主: Eschew
11#
發(fā)表于 2025-3-23 12:26:07 | 只看該作者
Dimensional Reduction and its Breakdown in the Driven Random Field ,(,) Model,rty, which predicts that the critical behavior of the driven disordered system at zero temperature is the same as that of the lower dimensional pure system in equilibrium. However, this dimensional reduction breaks down in low enough dimensions due to a nonperturbative effect associated with meta-st
12#
發(fā)表于 2025-3-23 14:51:09 | 只看該作者
2190-5053 tion between quenched disorder and nonequilibrium driving plays a crucial role. The book also includes a pedagogical review of a renormalizaion group technique for disordered systems.?.978-981-13-6173-9978-981-13-6171-5Series ISSN 2190-5053 Series E-ISSN 2190-5061
13#
發(fā)表于 2025-3-23 20:27:48 | 只看該作者
14#
發(fā)表于 2025-3-24 01:00:13 | 只看該作者
978-981-13-6173-9Springer Nature Singapore Pte Ltd. 2019
15#
發(fā)表于 2025-3-24 03:53:38 | 只看該作者
16#
發(fā)表于 2025-3-24 06:53:50 | 只看該作者
Springer Theseshttp://image.papertrans.cn/r/image/827147.jpg
17#
發(fā)表于 2025-3-24 12:58:59 | 只看該作者
18#
發(fā)表于 2025-3-24 18:53:09 | 只看該作者
Functional Renormalization Group of Disordered Systems,he renormalized disorder correlator. We explain that its nonanalytic behavior leads to the breakdown of the dimensional reduction. As well-known examples, we derive the one-loop functional renormalization group equations for the random manifold and random field O(N) models, and discuss the properties of their fixed points.
19#
發(fā)表于 2025-3-24 19:24:23 | 只看該作者
20#
發(fā)表于 2025-3-25 02:55:36 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 01:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁波市| 罗山县| 龙岩市| 岱山县| 颍上县| 偃师市| 通榆县| 九龙城区| 苍山县| 台江县| 漠河县| 吉林市| 闵行区| 乌海市| 邢台市| 塘沽区| 读书| 甘谷县| 镇平县| 漳州市| 河西区| 中江县| 商丘市| 托里县| 开化县| 三台县| 宝坻区| 永泰县| 商洛市| 澄迈县| 宁河县| 淄博市| 兰坪| 永寿县| 滨州市| 崇明县| 井冈山市| 余干县| 五河县| 兖州市| 沁阳市|