找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Renewable Energy Optimization, Planning and Control; Proceedings of ICRTE Anita Khosla,Monika Aggarwal Conference proceedings 2022 The Edit

[復(fù)制鏈接]
樓主: panache
11#
發(fā)表于 2025-3-23 13:31:13 | 只看該作者
12#
發(fā)表于 2025-3-23 16:09:12 | 只看該作者
Solar Irradiation Forecasting by Long-Short Term Memory Using Different Training Algorithms,wind forecasting, etc. This paper presents the forecasting of one step ahead solar global horizontal irradiance (GHI) by long-short term memory (LSTM) deep learning network using three different training algorithms. The LSTM network is employed using three different training algorithms: adaptive mom
13#
發(fā)表于 2025-3-23 21:59:33 | 只看該作者
Forecasting of Wind Speed by Using Deep Learning for Optimal Use of the Energy Produced by Wind Farter grid management and scheduling of different types of power plants connected to the grid. This paper uses deep learning Convolutional Neural Network (CNN) for wind speed forecasting. The time series data of wind speed is separated into training, validation, and testing data and the errors in fore
14#
發(fā)表于 2025-3-23 22:58:29 | 只看該作者
15#
發(fā)表于 2025-3-24 02:38:39 | 只看該作者
,Genetic Algorithm Based Intelligent Control Strategy for Multi-input Multi-output DC–DC Converter,cle (EV) applications. In this work, two-input and two-output DC–DC converter is considered. Genetic algorithm, a nature-inspired algorithm is used to search for the optimized parameters of Proportional–Integral (PI) controller applied to MIMO converter. Also, a trained neural network is used to enh
16#
發(fā)表于 2025-3-24 10:21:22 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:49 | 只看該作者
Maximization of Energy Production from Sholayar Hydropower Plant in India,er release. A linear mathematical model is examined and analyzed the efficiency of the model in terms of the amount of hydropower produced. Sholayar powerhouse station of Sholayar reservoir, situated in Tamil Nadu, India is chosen as the study area for this research work. A multi-reservoir framework
18#
發(fā)表于 2025-3-24 14:52:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:27:34 | 只看該作者
Support Vector Machine Based Forecasting for Renewable Energy Systems,and the uncertainty in the load require the correct prediction of resources to optimize costs. Flexible power reserve management is an important function of ancillary services. To predict this reserve, support vector machine-based system has been employed with the incorporation of fuzzy inference sy
20#
發(fā)表于 2025-3-24 23:40:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
格尔木市| 新兴县| 龙井市| 怀安县| 泾源县| 济宁市| 弥渡县| 通许县| 眉山市| 沙田区| 秦皇岛市| 贺兰县| 太谷县| 芜湖市| 萝北县| 衢州市| 吉木萨尔县| 清苑县| 图们市| 伽师县| 青龙| 天峨县| 马山县| 通辽市| 鄯善县| 来凤县| 灵宝市| 巴马| 济南市| 和政县| 丰顺县| 克东县| 西畴县| 灌云县| 吉隆县| 凌源市| 洛阳市| 开封市| 红安县| 洪雅县| 襄城县|