找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Remote Sensing of Forest Environments; Concepts and Case St Michael A. Wulder,Steven E. Franklin Book 2003 Springer Science+Business Media

[復(fù)制鏈接]
樓主: Intermediary
31#
發(fā)表于 2025-3-27 00:46:59 | 只看該作者
32#
發(fā)表于 2025-3-27 02:31:51 | 只看該作者
33#
發(fā)表于 2025-3-27 05:58:56 | 只看該作者
34#
發(fā)表于 2025-3-27 10:32:25 | 只看該作者
35#
發(fā)表于 2025-3-27 17:18:30 | 只看該作者
Rationale and Conceptual Framework for Classification Approaches to Assess Forest Resources and Propd that multispectral digital images are composed of multivariate measurement vectors for each and every pixel. The hundreds of thousands of such vectors typically making up an image could be treated as class descriptors, and the spectral bands as explanatory variables related to categories of intere
36#
發(fā)表于 2025-3-27 21:44:25 | 只看該作者
Remote Sensing of Forests Over Timeing to environmental conditions; physical appearance such as colour and size may change due to phenology or human disturbance. At the stand level, the structure of forest canopies may change in terms of horizontal measures of canopy closure and gap size and shape and vertical measures of number of l
37#
發(fā)表于 2025-3-27 23:55:12 | 只看該作者
38#
發(fā)表于 2025-3-28 03:23:09 | 只看該作者
39#
發(fā)表于 2025-3-28 09:24:15 | 只看該作者
Regional Forest Land Cover Characterisation using Medium Spatial Resolution Satellite Dataor management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. .; .; .; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resoluti
40#
發(fā)表于 2025-3-28 11:48:16 | 只看該作者
Modeling Forest Productivity Using Data Acquired Through Remote Sensingentory surveys supplemented with aerial stereo-photography. The development of physiologically-based process models, which predict forest growth based on underlying physiological processes, and digital remote sensing in combination improve our ability to interpret and to predict forest growth patter
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎兰屯市| 鹿邑县| 秀山| 伊宁县| 亳州市| 泰和县| 南丹县| 诏安县| 平度市| 汶川县| 涪陵区| 庄河市| 六枝特区| 崇阳县| 南靖县| 陇南市| 汝城县| 原平市| 竹北市| 长寿区| 新绛县| 民丰县| 镇平县| 阿克陶县| 武功县| 乌兰察布市| 伊通| 永平县| 敦化市| 班戈县| 阜康市| 江孜县| 麻阳| 白城市| 拉萨市| 东莞市| 台北市| 伽师县| 林甸县| 娄烦县| 界首市|