找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Religion And Ultimate Well-Being; An Explanatory Theor Martin Prozesky Book 1984 Palgrave Macmillan, a division of Macmillan Publishers Lim

[復(fù)制鏈接]
查看: 20289|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:58:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Religion And Ultimate Well-Being
副標(biāo)題An Explanatory Theor
編輯Martin Prozesky
視頻videohttp://file.papertrans.cn/827/826528/826528.mp4
叢書名稱Library of Philosophy and Religion
圖書封面Titlebook: Religion And Ultimate Well-Being; An Explanatory Theor Martin Prozesky Book 1984 Palgrave Macmillan, a division of Macmillan Publishers Lim
出版日期Book 1984
關(guān)鍵詞philosophy; religion; religious studies; well-being
版次1
doihttps://doi.org/10.1007/978-1-349-17526-0
isbn_ebook978-1-349-17526-0Series ISSN 2947-0242 Series E-ISSN 2947-0250
issn_series 2947-0242
copyrightPalgrave Macmillan, a division of Macmillan Publishers Limited 1984
The information of publication is updating

書目名稱Religion And Ultimate Well-Being影響因子(影響力)




書目名稱Religion And Ultimate Well-Being影響因子(影響力)學(xué)科排名




書目名稱Religion And Ultimate Well-Being網(wǎng)絡(luò)公開度




書目名稱Religion And Ultimate Well-Being網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Religion And Ultimate Well-Being被引頻次




書目名稱Religion And Ultimate Well-Being被引頻次學(xué)科排名




書目名稱Religion And Ultimate Well-Being年度引用




書目名稱Religion And Ultimate Well-Being年度引用學(xué)科排名




書目名稱Religion And Ultimate Well-Being讀者反饋




書目名稱Religion And Ultimate Well-Being讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:08:47 | 只看該作者
Martin Prozeskyted in the first chapter are reconsidered in the second chapter from a non-commutative geometry view point. Differential geometry begins with the algebra . of . and builds up by adding multiple structures; classical index theory uses most of these structures. Non-commutative geometry is .; its axiom
地板
發(fā)表于 2025-3-22 06:32:53 | 只看該作者
Martin Prozeskyted in the first chapter are reconsidered in the second chapter from a non-commutative geometry view point. Differential geometry begins with the algebra . of . and builds up by adding multiple structures; classical index theory uses most of these structures. Non-commutative geometry is .; its axiom
5#
發(fā)表于 2025-3-22 11:19:41 | 只看該作者
Martin Prozeskyted in the first chapter are reconsidered in the second chapter from a non-commutative geometry view point. Differential geometry begins with the algebra . of . and builds up by adding multiple structures; classical index theory uses most of these structures. Non-commutative geometry is .; its axiom
6#
發(fā)表于 2025-3-22 13:47:42 | 只看該作者
7#
發(fā)表于 2025-3-22 20:40:45 | 只看該作者
ted in the first chapter are reconsidered in the second chapter from a non-commutative geometry view point. Differential geometry begins with the algebra . of . and builds up by adding multiple structures; classical index theory uses most of these structures. Non-commutative geometry is .; its axiom
8#
發(fā)表于 2025-3-22 23:25:02 | 只看該作者
The Art of Explaining,f explanation most thoroughly. It is they, chiefly in the physical and social sciences, who have made the greatest progress towards pin-pointing the steps that should be taken in order to explain a phenomenon satisfactorily. That is the purpose of the present chapter. After a review of the procedure
9#
發(fā)表于 2025-3-23 03:15:39 | 只看該作者
10#
發(fā)表于 2025-3-23 09:16:52 | 只看該作者
try, the basic algebra ., (2) in differential geometry, the basic algebra . is used to produce .; in non-commutative geometry the . assumption is removed. Non-commutative geometry finds and uses the . which stays at the foundation of geometry: of differential forms, product of (some) distributions,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴江市| 凌源市| 科技| 银川市| 会理县| 津市市| 陆良县| 明星| 武威市| 高台县| 湖北省| 大化| 蓬莱市| 斗六市| 五台县| 平遥县| 黔东| 武定县| 全州县| 天津市| 汉源县| 赣榆县| 普格县| 洛隆县| 无为县| 金川县| 怀仁县| 即墨市| 南充市| 昔阳县| 阿拉尔市| 高邮市| 乌拉特后旗| 襄汾县| 凯里市| 南木林县| 内丘县| 肥乡县| 台中县| 油尖旺区| 印江|