找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reliability Engineering for Industrial Processes; An Analytics Perspec P. K. Kapur,Hoang Pham,Vivek Kumar Book 2024 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: 熱愛
41#
發(fā)表于 2025-3-28 18:40:18 | 只看該作者
Analysis of Progressively Censored Repair Time of Airborne Communication Transceiver with Burr-Hatkmethods of estimation for complete data are generalized to the case under progressive censored samples. These approaches comprise maximum likelihood, least squares, maximum product spacings, and Bayesian estimation. Interval estimate and coverage probability for the parameter are derived by the use
42#
發(fā)表于 2025-3-28 20:34:44 | 只看該作者
43#
發(fā)表于 2025-3-29 01:25:23 | 只看該作者
,A Review on?Kidney Failure Prediction Using Machine Learning Models,y detection of kidney failure is crucial in preventing and managing this condition. In recent years, machine learning (ML) models have emerged as promising tools for predicting kidney failure, offering the potential to improve patient outcomes through timely intervention. This comprehensive review p
44#
發(fā)表于 2025-3-29 03:57:20 | 只看該作者
,Machine Learning Based Remaining Useful Life Estimation—Concept and Case Study,ications indispensable. Traditional methods, like Reactive Maintenance, fail to detect problems beforehand and can jeopardize resources and/or lives. Proactive Maintenance measures, especially Predictive Maintenance has gained popularity with the advent of tons of data-handling resources. Remaining
45#
發(fā)表于 2025-3-29 09:29:09 | 只看該作者
Modelling Software Reliability Growth Incorporating Testing Coverage Function and Fault Reduction Frequires quality software. A number of studies have been undertaken in recent years in order to develop an extremely trustworthy software system. To be more precise, there have been several analytical software reliability models put out for the evaluation of software reliability. Here, we examine re
46#
發(fā)表于 2025-3-29 12:26:35 | 只看該作者
,Software Defect Prediction Using Abstract Syntax Trees Features and Object—Oriented Metrics,uirements. Previous studies used methods such as classifying modules as faulty or not, or performing multi-class classification to predict the number of bugs. Some studies used Object-Oriented (OO) metrics, while others used Abstract Syntax Trees (ASTs) to extract code features for bug prediction. T
47#
發(fā)表于 2025-3-29 18:39:50 | 只看該作者
,A Review of Alzheimer’s Disease Identification by Machine Learning,ep learning techniques. Support Vector Machines (SVMs) and Decision Trees serve as robust tools, providing transparency and interpretability in the analysis of diverse datasets, including genetic, clinical, and imaging information. These methods contribute to the elucidation of key factors influenci
48#
發(fā)表于 2025-3-29 22:53:08 | 只看該作者
49#
發(fā)表于 2025-3-30 01:22:43 | 只看該作者
50#
發(fā)表于 2025-3-30 04:20:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武邑县| 开封市| 峨山| 涞源县| 冀州市| 苗栗市| 龙南县| 体育| 策勒县| 肇庆市| 灵寿县| 乌海市| 栾城县| 华池县| 恩施市| 广丰县| 九江市| 高平市| 启东市| 顺昌县| 卓资县| 大关县| 宝鸡市| 遂宁市| 峡江县| 疏附县| 句容市| 得荣县| 赣榆县| 颍上县| 周至县| 盱眙县| 湖口县| 阳山县| 房产| 黄骅市| 巴彦淖尔市| 吉林市| 临安市| 尉氏县| 平顺县|