找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reliability Engineering for Industrial Processes; An Analytics Perspec P. K. Kapur,Hoang Pham,Vivek Kumar Book 2024 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: 熱愛
21#
發(fā)表于 2025-3-25 07:15:16 | 只看該作者
22#
發(fā)表于 2025-3-25 11:19:51 | 只看該作者
23#
發(fā)表于 2025-3-25 15:40:49 | 只看該作者
24#
發(fā)表于 2025-3-25 19:23:30 | 只看該作者
Fault Removal Efficiency: A Key Driver in Software Reliability Growth Modeling,s management, FRE provides developers with invaluable insights into testing efficacy and aids in predicting additional efforts required. The chapter explores some SRGMs that incorporate FRE, providing readers with a comprehensive insight into how FRE shapes the dynamics of the SRGM.
25#
發(fā)表于 2025-3-25 20:04:29 | 只看該作者
,A Review on?Kidney Failure Prediction Using Machine Learning Models,on, decision trees, support vector machines, and deep learning. The review analyzes key studies and methodologies employed in predicting kidney failure, highlighting the strengths and limitations of different ML approaches. It emphasizes the importance of feature selection, data preprocessing, and m
26#
發(fā)表于 2025-3-26 03:45:13 | 只看該作者
,Machine Learning Based Remaining Useful Life Estimation—Concept and Case Study,ng useful life of machine components. We also demonstrate a case study using NASA’s CMAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset. The case study incorporates the successful implementation of ML algorithms and the subsequent use of Evolutionary Computing techniques like Parti
27#
發(fā)表于 2025-3-26 06:50:37 | 只看該作者
,Software Defect Prediction Using Abstract Syntax Trees Features and Object—Oriented Metrics,rom file-level ASTs of the source code of projects and compared with the models trained on OO metrics. The CNN model trained on file-level AST features produced MAE results similar to the LSTM model trained on OO metrics, but outperformed it in terms of MRE.
28#
發(fā)表于 2025-3-26 11:56:27 | 只看該作者
,A Review of Alzheimer’s Disease Identification by Machine Learning,p learning continue to evolve, the amalgamation of these techniques holds promise in revolutionizing our approach to Alzheimer’s disease, offering insights that may lead to more effective interventions and improved patient outcomes.
29#
發(fā)表于 2025-3-26 12:39:19 | 只看該作者
30#
發(fā)表于 2025-3-26 19:41:43 | 只看該作者
A Study on the Efficiency of Divergence Measure in Fuzzy TOPSIS Algorithm for Multi-attribute Decisthat the proposed model provides a accurate way to select the best university among the large number of choices available for the considered universities. The paper settles with a discussion of a case study and experimental findings.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通辽市| 华池县| 东光县| 宜兴市| 丹棱县| 敦煌市| 固原市| 玉树县| 康保县| 恭城| 伊吾县| 犍为县| 望江县| 临猗县| 西乡县| 广丰县| 湖口县| 高雄市| 卢氏县| 桓台县| 旬邑县| 阿尔山市| 玛纳斯县| 县级市| 本溪市| 黔江区| 正镶白旗| 那坡县| 长阳| 元江| 淮安市| 英德市| 池州市| 南汇区| 金湖县| 化德县| 阿拉善左旗| SHOW| 桃江县| 文化| 阳谷县|