找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relativity and Gravitation; 100 Years after Eins Ji?í Bi?ák,Tomá? Ledvinka Conference proceedings 2014 Springer International Publishing Sw

[復制鏈接]
樓主: Intermediary
21#
發(fā)表于 2025-3-25 07:12:58 | 只看該作者
Geometrostatics: The Geometry of Static Space-Timesheory. Moreover, we present a novel physical interpretation of the level sets of the canonical lapse function and apply it to prove uniqueness results. Finally, we suggest a notion of force on test particles in geometrostatic space-times.
22#
發(fā)表于 2025-3-25 07:30:16 | 只看該作者
23#
發(fā)表于 2025-3-25 13:16:53 | 只看該作者
Non-Linear Effects in Non-Kerr Spacetimesacetime detectable. One of the differences is that these non-Kerr spacetimes do not posses all the symmetries needed to make them integrable. We discuss how we can take advantage of this fact by examining EMRIs into the Manko–Novikov spacetime.
24#
發(fā)表于 2025-3-25 17:31:45 | 只看該作者
25#
發(fā)表于 2025-3-25 22:45:39 | 只看該作者
26#
發(fā)表于 2025-3-26 00:34:59 | 只看該作者
Hidden Symmetries of the Dirac Equation in Curved Space-Timeimit, the spinning particle. A concrete application of the general results is provided by the case of rotating higher dimensional black holes with cosmological constant, which we discuss. For these metrics the Dirac equation is separable and the relation between this and hidden symmetries is explained.
27#
發(fā)表于 2025-3-26 08:00:44 | 只看該作者
28#
發(fā)表于 2025-3-26 12:07:54 | 只看該作者
Shape Dynamicsl covariance, but not local relativity of rods. It is the purpose of this contribution to show how Shape Dynamics, a theory that is locally equivalent to General Relativity, implements local relativity of rods and spatial covariance and how a BRST formulation, which I call Doubly General Relativity, implements all of Barbour’s principles.
29#
發(fā)表于 2025-3-26 14:02:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:19:39 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 18:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨边| 开江县| 海南省| 同江市| 盱眙县| 顺昌县| 佳木斯市| 墨竹工卡县| 灵山县| 宜兰市| 闸北区| 黑河市| 分宜县| 连江县| 阳谷县| 息烽县| 大足县| 定边县| 庆城县| 称多县| 栾城县| 循化| 巧家县| 红河县| 新津县| 余姚市| 彭山县| 嘉鱼县| 开封市| 隆化县| 临漳县| 吉水县| 宜川县| 孝感市| 苏尼特左旗| 关岭| 嘉禾县| 广灵县| 梨树县| 阳春市| 维西|