找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relativistic Quantum Mechanics and Introduction to Field Theory; Francisco J. Ynduráin Textbook 1996 Springer-Verlag Berlin Heidelberg 199

[復(fù)制鏈接]
查看: 35485|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:31:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory
編輯Francisco J. Ynduráin
視頻videohttp://file.papertrans.cn/827/826238/826238.mp4
叢書名稱Theoretical and Mathematical Physics
圖書封面Titlebook: Relativistic Quantum Mechanics and Introduction to Field Theory;  Francisco J. Ynduráin Textbook 1996 Springer-Verlag Berlin Heidelberg 199
描述A fully relativistic treatment of the quantum mechanics of particles requires the introduction of quantum field theory, that is to say, the quantum mechan- ics of systems with an infinite number of degrees of freedom. This is because the relativistic equivalence of mass and energy plus the quantum possibility of fluctuations imply the existence of (real or virtual) creation and annihilation of particles in unlimited numbers. In spite of this, there exist processes, and energy ranges, where a treat- ment in terms of ordinary quantum mechanical tools is appropriate, and the approximation of neglecting the full field-theoretic description is justified. Thus, one may use concepts such as potentials, and wave equations, clas- sical fields and classical currents, etc. The present text is devoted precisely to the systematic discussion of these topics, to which we have added a gen- eral description of one- and two-particle relativistic states, in particular for scattering processes. A field-theoretic approach may not be entirely avoided, and in fact an introduction to quantum field theory is presented in this text. However, field theory is not the object per se of this book; apart from a f
出版日期Textbook 1996
關(guān)鍵詞Cross Section; Potential; S-Matrix; Spin; quantum field theory; quantum mechanics; relativistic Quantum Me
版次1
doihttps://doi.org/10.1007/978-3-642-61057-8
isbn_softcover978-3-642-64674-4
isbn_ebook978-3-642-61057-8Series ISSN 1864-5879 Series E-ISSN 1864-5887
issn_series 1864-5879
copyrightSpringer-Verlag Berlin Heidelberg 1996
The information of publication is updating

書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory影響因子(影響力)




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory影響因子(影響力)學(xué)科排名




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory網(wǎng)絡(luò)公開度




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory被引頻次




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory被引頻次學(xué)科排名




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory年度引用




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory年度引用學(xué)科排名




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory讀者反饋




書目名稱Relativistic Quantum Mechanics and Introduction to Field Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:01:38 | 只看該作者
Massive Particles with Spin 1. Massless Spin 1 Particle: Photon Wave Functions. Particles with High four-vector, .(.). This wave function has one component too many, so we will have to subject it to a supplementary condition. As we shall see in a moment, the one leading to correct interpretation is that of (four-) transversality, ? · .(.) = 0. .(.) will also have to verify the Klein—Gordon equation, so that we have, in natural units . = . = 1,
地板
發(fā)表于 2025-3-22 06:00:12 | 只看該作者
Spin 1/2 Particles, is also positive definite, denoted by +(. + .).. Other square roots become possible if we give up positive definiteness. This may appear to spoil the theory by allowing negative energies; but, if the operator is Hermitean, states corresponding to negative energies will be orthogonal to positive-ene
5#
發(fā)表于 2025-3-22 10:43:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:35:17 | 只看該作者
Massive Particles with Spin 1. Massless Spin 1 Particle: Photon Wave Functions. Particles with Highsformations a three-vector will develop a fourth component; therefore, to describe a relativistic particle with spin 1 (and mass . ≠ 0) we will need a four-vector, .(.). This wave function has one component too many, so we will have to subject it to a supplementary condition. As we shall see in a mo
7#
發(fā)表于 2025-3-22 17:05:31 | 只看該作者
General Description of Relativistic States,ct. 8), there is little doubt that the wave function formalism for relativistic particles is not quite satisfactory. First of all, the meaning of the variables . and . in a wave function .(.,.) is unclear; as we will show, . does not represent the position for a Dirac particle, and in fact a positio
8#
發(fā)表于 2025-3-22 23:16:46 | 只看該作者
Quantum Fields: Spin 0, 1/2, 1. Covariant Quantization of the Electromagnetic Field,t provide a consistent description of physical reality. There are a number of reasons for this. Some are empirical: in any process at high energy, particles are created; therefore a wave function formalism, where the number of particles stays constant in time, will not be appropriate. Moreover, even
9#
發(fā)表于 2025-3-23 04:19:11 | 只看該作者
10#
發(fā)表于 2025-3-23 08:53:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱芜市| 长葛市| 丹凤县| 金昌市| 丰县| 张家港市| 香港 | 平乡县| 沽源县| 沁水县| 秦皇岛市| 台北市| 轮台县| 县级市| 滦平县| 马尔康县| 沈丘县| 长汀县| 达州市| 海淀区| 陆川县| 高安市| 远安县| 天祝| 渑池县| 昌都县| 新民市| 房山区| 抚顺县| 瑞昌市| 华亭县| 三门县| 长顺县| 冀州市| 卫辉市| 阳曲县| 双辽市| 偃师市| 富顺县| 堆龙德庆县| 乌兰县|