找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relativistic Quantum Mechanics; Wave Equations Walter Greiner Textbook 19901st edition Springer-Verlag Berlin Heidelberg 1990 Dirac equatio

[復(fù)制鏈接]
樓主: satisficer
51#
發(fā)表于 2025-3-30 09:36:39 | 只看該作者
Wave Equations for Particles with Arbitrary Spins,equation with positive energy vanish in the case .. ≠ 0 in the rest system of the particles [cf. (6.13)]. Thus, for ...... (which means ..- = 0 when we are in the rest system) the spinor components are given by ..(0) = δ. and thus ..
52#
發(fā)表于 2025-3-30 13:16:08 | 只看該作者
Lorentz Invariance and Relativistic Symmetry Principles,mation .., which relates each point with coordinates .. to new ones ... the absolute value should remain unchanged by this transformation (this is the fundamental, defining condition for orthogonal transformations), i.e. ..
53#
發(fā)表于 2025-3-30 18:21:39 | 只看該作者
,A Wave Equation for Spin-1/2 Particles — The Dirac Equation,ite probability density. At that time there were doubts concerning the Klein-Gordon equation, which did not yield such probability density [see (1.29)]. The charge density interpretation was not known at that time and would have made little physical sense, because π. and π. mesons as charged spin-0
54#
發(fā)表于 2025-3-30 21:46:01 | 只看該作者
Bilinear Covariants of the Dirac Spinors,the Dirac matrices and their products. We write and verify step by step the postulated properties of the . as well as some extra ones (also cf. Example 3.1). First we shall prove that in (5.1) there are indeed 16 matrices. This is easily done by adding the values written in brackets below the symbol
55#
發(fā)表于 2025-3-31 03:22:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富锦市| 乌鲁木齐市| 分宜县| 永兴县| 澳门| 平遥县| 万年县| 铜梁县| 丁青县| 云和县| 金乡县| 阳山县| 呼和浩特市| 南和县| 西华县| 哈密市| 乐安县| 凯里市| 东港市| 永顺县| 玉环县| 蓬莱市| 德格县| 灵寿县| 漠河县| 神池县| 遂川县| 大冶市| 华池县| 瑞昌市| 聊城市| 靖边县| 民和| 青河县| 平陆县| 静海县| 方正县| 高安市| 新乡市| 龙州县| 嘉禾县|