找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms; CIRM Jean-Morlet Cha Volker Heiermann,Dipendra Pr

[復(fù)制鏈接]
樓主: affected
21#
發(fā)表于 2025-3-25 05:53:16 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:30 | 只看該作者
Book 2018he local Langlands classification for classical groups...The book should be of interest to students as well as professional researchers working in the broad area of?number theory and representation theory...?..?..
23#
發(fā)表于 2025-3-25 14:20:53 | 只看該作者
0075-8434 students as well as professional researchers working in the broad area of?number theory and representation theory...?..?..978-3-319-95230-7978-3-319-95231-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
24#
發(fā)表于 2025-3-25 17:26:13 | 只看該作者
Distinguished Representations of Reductive ,-Adic Groups,include criteria that characterize relatively supercuspidal and relative discrete series representations, formulas for spaces of invariant forms on distinguished tame supercuspidal representations, and properties of spherical characters.
25#
發(fā)表于 2025-3-25 20:31:40 | 只看該作者
26#
發(fā)表于 2025-3-26 03:31:24 | 只看該作者
978-3-319-95230-7Springer Nature Switzerland AG 2018
27#
發(fā)表于 2025-3-26 04:19:33 | 只看該作者
Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms978-3-319-95231-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
28#
發(fā)表于 2025-3-26 09:40:15 | 只看該作者
29#
發(fā)表于 2025-3-26 14:35:06 | 只看該作者
The Trace Formula and the Proof of the Global Jacquet-Langlands Correspondence,This paper contains the material covered in the lectures I gave at the doctoral school . held at the CIRM, Luminy, 16–20 May 2016.
30#
發(fā)表于 2025-3-26 20:01:36 | 只看該作者
Distinction of Representations via Bruhat-Tits Buildings of ,-Adic Groups,Let .∕. be a symmetric space over a non-archimedean local field .: . is (the group of .-points of) a reductive group over . and .???. is the subgroup of (.-rational) points in . fixed by an involution.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延津县| 永兴县| 湖南省| 辉南县| 灌云县| 宁强县| 青阳县| 洪洞县| 衡山县| 扬中市| 杭锦后旗| 祁连县| 成武县| 阳城县| 保亭| 祁阳县| 酒泉市| 临夏县| 论坛| 铜陵市| 襄樊市| 宾阳县| 彭阳县| 定兴县| 晋宁县| 千阳县| 开阳县| 称多县| 藁城市| 克什克腾旗| 织金县| 榕江县| 同心县| 达州市| 色达县| 桦川县| 阿克| 墨竹工卡县| 民县| 孟村| 定结县|