找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relational and Algebraic Methods in Computer Science; 19th International C Uli Fahrenberg,Mai Gehrke,Michael Winter Conference proceedings

[復制鏈接]
樓主: 方言
41#
發(fā)表于 2025-3-28 15:14:56 | 只看該作者
Algorithmic Correspondence for Relevance Logics, Bunched Implication Logics, and Relation Algebras loped for computing first-order equivalents of formulas of the language of relevance logics . in terms of the standard Routley-Meyer relational semantics. It succeeds on a large class of axioms of relevance logics, including all so called inductive formulas. In the present work we re-interpret . fro
42#
發(fā)表于 2025-3-28 22:14:48 | 只看該作者
43#
發(fā)表于 2025-3-29 00:44:00 | 只看該作者
Some Modal and Temporal Translations of Generalized Basic Logic,ulated with exchange, weakening, and falsum). We further exhibit algebraic semantics for each logic in this family, in particular showing that all of them are algebraizable in the sense of Blok and Pigozzi. Using this algebraization result and an analysis of congruences in the pertinent varieties, w
44#
發(fā)表于 2025-3-29 05:20:46 | 只看該作者
45#
發(fā)表于 2025-3-29 11:14:36 | 只看該作者
46#
發(fā)表于 2025-3-29 15:02:31 | 只看該作者
47#
發(fā)表于 2025-3-29 18:04:47 | 只看該作者
48#
發(fā)表于 2025-3-29 21:08:44 | 只看該作者
49#
發(fā)表于 2025-3-30 03:39:34 | 只看該作者
Free Modal Riesz Spaces are Archimedean: A Syntactic Proof,ttices) endowed with a positive linear 1–decreasing operator, and have found application in the development of probabilistic temporal logics in the field of formal verification. All our results have been formalised using the Coq proof assistant.
50#
發(fā)表于 2025-3-30 07:08:53 | 只看該作者
Polyadic Spaces and Profinite Monoids,Boolean hyperdoctrine. He also proposed to recover a polyadic space from a simpler core, its Stirling kernel. We generalize this here in order to adapt polyadic spaces to certain classes of first-order theories. We will see how these ideas can be applied to give a correspondence between some first-o
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
龙门县| 廊坊市| 浦江县| 太和县| 建阳市| 阳高县| 扎赉特旗| 永城市| 宜黄县| 连江县| 海城市| 盐池县| 凯里市| 饶平县| 阜平县| 益阳市| 潜山县| 怀来县| 新田县| 彭山县| 昌黎县| 瑞金市| 岐山县| 阿巴嘎旗| 遂平县| 宁武县| 定陶县| 宣威市| 永吉县| 红桥区| 兴城市| 治县。| 皮山县| 山西省| 五指山市| 图木舒克市| 阿荣旗| 禹城市| 汶川县| 哈密市| 靖边县|