找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relational and Algebraic Methods in Computer Science; 19th International C Uli Fahrenberg,Mai Gehrke,Michael Winter Conference proceedings

[復制鏈接]
樓主: 方言
41#
發(fā)表于 2025-3-28 15:14:56 | 只看該作者
Algorithmic Correspondence for Relevance Logics, Bunched Implication Logics, and Relation Algebras loped for computing first-order equivalents of formulas of the language of relevance logics . in terms of the standard Routley-Meyer relational semantics. It succeeds on a large class of axioms of relevance logics, including all so called inductive formulas. In the present work we re-interpret . fro
42#
發(fā)表于 2025-3-28 22:14:48 | 只看該作者
43#
發(fā)表于 2025-3-29 00:44:00 | 只看該作者
Some Modal and Temporal Translations of Generalized Basic Logic,ulated with exchange, weakening, and falsum). We further exhibit algebraic semantics for each logic in this family, in particular showing that all of them are algebraizable in the sense of Blok and Pigozzi. Using this algebraization result and an analysis of congruences in the pertinent varieties, w
44#
發(fā)表于 2025-3-29 05:20:46 | 只看該作者
45#
發(fā)表于 2025-3-29 11:14:36 | 只看該作者
46#
發(fā)表于 2025-3-29 15:02:31 | 只看該作者
47#
發(fā)表于 2025-3-29 18:04:47 | 只看該作者
48#
發(fā)表于 2025-3-29 21:08:44 | 只看該作者
49#
發(fā)表于 2025-3-30 03:39:34 | 只看該作者
Free Modal Riesz Spaces are Archimedean: A Syntactic Proof,ttices) endowed with a positive linear 1–decreasing operator, and have found application in the development of probabilistic temporal logics in the field of formal verification. All our results have been formalised using the Coq proof assistant.
50#
發(fā)表于 2025-3-30 07:08:53 | 只看該作者
Polyadic Spaces and Profinite Monoids,Boolean hyperdoctrine. He also proposed to recover a polyadic space from a simpler core, its Stirling kernel. We generalize this here in order to adapt polyadic spaces to certain classes of first-order theories. We will see how these ideas can be applied to give a correspondence between some first-o
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇礼县| 潜山县| 哈密市| 玛纳斯县| 沂源县| 仁怀市| 广丰县| 中牟县| 江达县| 平山县| 疏勒县| 盘锦市| 铜川市| 西畴县| 新乐市| 都匀市| 新密市| 桐庐县| 玉树县| 贵港市| 蒙山县| 上栗县| 新河县| 梁河县| 英山县| 濮阳市| 东乡县| 花莲市| 霍山县| 阿坝县| 娱乐| 儋州市| 叶城县| 石城县| 沙洋县| 甘谷县| 清徐县| 长白| 闽清县| 通山县| 越西县|