找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning for Sequential Decision and Optimal Control; Shengbo Eben Li Textbook 2023 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
樓主: 投降
11#
發(fā)表于 2025-3-23 12:18:07 | 只看該作者
Model-Based Indirect RL: Dynamic Programming,s induced by the present action and future actions. Dynamic programming (DP) from Bellman’s principle of optimality serves as a leading method for solving such problems, which breaks down a multistage problem into a series of overlapping subproblems and solves each optimal decision recursively. In t
12#
發(fā)表于 2025-3-23 14:29:01 | 只看該作者
Indirect RL with Function Approximation,o the dimension of state space or action space grows exponentially. To address this issue, one popular generalization technique called function approximation has been widely used in RL, in which value function and policy are approximated with proper parameterized functions. The function approximatio
13#
發(fā)表于 2025-3-23 21:30:33 | 只看該作者
Direct RL with Policy Gradient,on any optimality condition to compute the optimal policy. One large class of direct RL algorithms belongs to first-order optimization, and how to calculate their policy gradients plays a central role in this algorithm family. Popular policy gradients include likelihood ratio gradient, natural polic
14#
發(fā)表于 2025-3-23 23:58:37 | 只看該作者
Approximate Dynamic Programming,e-horizon control tasks are generally formulated as optimal control problems (OCPs) with the assumption that perfect deterministic models are known. Online receding horizon optimization in traditional model predictive control is a viable but computationally inefficient approach. ADP refers to a clas
15#
發(fā)表于 2025-3-24 03:05:34 | 只看該作者
State Constraints and Safety Consideration,antees. Equipping RL/ADP with the ability to handle constrained behaviors is of practical significance in both training process and controller implementation. Basically, there are three constrained RL/ADP methods, including penalty function method, Lagrange multiplier method, and feasible descent di
16#
發(fā)表于 2025-3-24 09:16:45 | 只看該作者
Deep Reinforcement Learning, to learn directly from measurements of raw video data without any hand-engineered features or domain heuristics. A neural network with multiple layers that replicates the structure of a human brain is an effective tool to leverage. Deep reinforcement learning (DRL), which is an in-depth combination
17#
發(fā)表于 2025-3-24 11:32:09 | 只看該作者
Miscellaneous Topics,ng RL are mainly related to (1) how to interact with the environment more efficiently and (2) how to learn an optimal policy with a certain amount of data. Studies on the former challenge include on-policy/off-policy, stochastic exploration, sparse reward enhancement, and offline learning, while tho
18#
發(fā)表于 2025-3-24 16:54:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:24:34 | 只看該作者
20#
發(fā)表于 2025-3-25 02:02:12 | 只看該作者
Shengbo Eben Li Begriffe. So sieht We1nert in einer puristischen Anwendung dieser Sichtweisen eine Sackgasse für künftige Forschung (. 1996, S. 10); . (1999) fragt, ob es sich bei diesen Sichtweisen nicht um ?alten Wein in neuen Schl?uchen“ handele, und . führt die Konjunktur des Begriffes darauf zurück, dass es z
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 08:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四子王旗| 鹿泉市| 萨嘎县| 洪洞县| 类乌齐县| 新干县| 佳木斯市| 彰武县| 望谟县| 周至县| 泰和县| 洪泽县| 建湖县| 同心县| 屏东市| 普安县| 河东区| 九龙县| 沁阳市| 江阴市| 玉树县| 菏泽市| 富川| 郓城县| 志丹县| 丰城市| 蕲春县| 古田县| 普兰县| 通道| 龙江县| 桐柏县| 江口县| 陆良县| 奎屯市| 丰原市| 花莲市| 崇阳县| 安多县| 浦县| 防城港市|