找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning; State-of-the-Art Marco Wiering,Martijn Otterlo Book 2012 Springer-Verlag Berlin Heidelberg 2012 Artificial Intellig

[復(fù)制鏈接]
樓主: 弄混
41#
發(fā)表于 2025-3-28 15:32:48 | 只看該作者
42#
發(fā)表于 2025-3-28 20:03:10 | 只看該作者
Hierarchical Approachestely and the results re-combined to find a solution to the original problem. It is well known that the na?ve application of reinforcement learning (RL) techniques fails to scale to more complex domains. This Chapter introduces hierarchical approaches to reinforcement learning that hold out the promi
43#
發(fā)表于 2025-3-28 23:25:06 | 只看該作者
44#
發(fā)表于 2025-3-29 03:44:45 | 只看該作者
Bayesian Reinforcement Learning prior distribution over unknown parameters and learning is achieved by computing a posterior distribution based on the data observed. Hence, Bayesian reinforcement learning distinguishes itself from other forms of reinforcement learning by explicitly maintaining a distribution over various quantiti
45#
發(fā)表于 2025-3-29 08:17:45 | 只看該作者
Partially Observable Markov Decision Processes have had many successes. In many problem domains, however, an agent suffers from limited sensing capabilities that preclude it from recovering a Markovian state signal from its perceptions. Extending the MDP framework, partially observable Markov decision processes (POMDPs) allow for principled dec
46#
發(fā)表于 2025-3-29 12:39:50 | 只看該作者
Predictively Defined Representations of State important information from the past into some sort of state variable. In this chapter, we start with a broad examination of the concept of state, with emphasis on the fact that there are many possible representations of state for a given dynamical system, each with different theoretical and computa
47#
發(fā)表于 2025-3-29 19:24:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:50:32 | 只看該作者
Decentralized POMDPsl reward based on local information only. This means that agents do not observe a Markovian signal during execution and therefore the agents’ individual policies map fromhistories to actions. Searching for an optimal joint policy is an extremely hard problem: it is NEXP-complete. This suggests, assu
49#
發(fā)表于 2025-3-30 00:39:03 | 只看該作者
Transfer in Reinforcement Learning: A Framework and a Survey improve its performance (e.g., by reducing the number of samples needed to achieve a nearly optimal performance). In this chapter we provide a formalization of the general transfer problem, we identify the main settings which have been investigated so far, and we review the most important approaches to transfer in reinforcement learning.
50#
發(fā)表于 2025-3-30 07:58:06 | 只看該作者
1867-4534 Reinforcement Learning.Includes a survey of previous papers.Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptiv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佳木斯市| 贺州市| 奉化市| 濮阳县| 墨竹工卡县| 普安县| 河曲县| 兴和县| 乐东| 托克托县| 吴堡县| 密云县| 永仁县| 通许县| 双辽市| 广南县| 靖江市| 息烽县| 洪洞县| 德昌县| 吉林省| 墨竹工卡县| 武冈市| 老河口市| 香港 | 民乐县| 靖边县| 杭锦旗| 阳西县| 永德县| 乌拉特前旗| 昌宁县| 沧源| 崇文区| 清河县| 昌图县| 五华县| 克山县| 澜沧| 泽库县| 于田县|