找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning; With Open AI, Tensor Abhishek Nandy,Manisha Biswas Book 2018 Abhishek Nandy and Manisha Biswas 2018 Reinforcement

[復(fù)制鏈接]
查看: 14518|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:01:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Reinforcement Learning
副標題With Open AI, Tensor
編輯Abhishek Nandy,Manisha Biswas
視頻videohttp://file.papertrans.cn/826/825931/825931.mp4
概述Discusses Open AI and Open AI Gym with relevance to reinforcement learning.Application of TensorFlow and Keras to reinforcement learning.Swarm Intelligence with Python in terms of reinforcement learni
圖書封面Titlebook: Reinforcement Learning; With Open AI, Tensor Abhishek Nandy,Manisha Biswas Book 2018 Abhishek Nandy and Manisha Biswas  2018 Reinforcement
描述Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You’ll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process.?.Reinforcement Learning.?discusses algorithm implementations important for reinforcement learning, including Markov’s Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI ?before looking at Open AI Gym. You’ll then learn about Swarm Intelligence with Python in terms of reinforcement learning..?.The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There’s also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you‘ll delve into Google’s Deep Mind and see scenarios where reinforcement learning can be used.?.What You‘ll Learn?.Absorb the core concepts of the reinforcement learning process.Use advanced topics of deep learning and AI.Work with Open AI Gym, Open AI, and Pytho
出版日期Book 2018
關(guān)鍵詞Reinforcement Learning; Artificial Intelligence; Python; TensorFlow; Keras; Deep Learning; Machine Learnin
版次1
doihttps://doi.org/10.1007/978-1-4842-3285-9
isbn_softcover978-1-4842-3284-2
isbn_ebook978-1-4842-3285-9
copyrightAbhishek Nandy and Manisha Biswas 2018
The information of publication is updating

書目名稱Reinforcement Learning影響因子(影響力)




書目名稱Reinforcement Learning影響因子(影響力)學(xué)科排名




書目名稱Reinforcement Learning網(wǎng)絡(luò)公開度




書目名稱Reinforcement Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Reinforcement Learning被引頻次




書目名稱Reinforcement Learning被引頻次學(xué)科排名




書目名稱Reinforcement Learning年度引用




書目名稱Reinforcement Learning年度引用學(xué)科排名




書目名稱Reinforcement Learning讀者反饋




書目名稱Reinforcement Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:50:30 | 只看該作者
地板
發(fā)表于 2025-3-22 05:08:13 | 只看該作者
5#
發(fā)表于 2025-3-22 10:06:27 | 只看該作者
rm Intelligence with Python in terms of reinforcement learniMaster reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You’ll then work with theories related
6#
發(fā)表于 2025-3-22 15:33:13 | 只看該作者
Applying Python to Reinforcement Learning,h analysis of Reinforcement Learning. We start off by going through Q learning in terms of Python. Then we describe Swarm intelligence in Python, with an introduction to what exactly Swarm intelligence is. The chapter also covers the Markov decision process (MDP) toolbox.
7#
發(fā)表于 2025-3-22 17:39:43 | 只看該作者
Book 2018ain a clear picture of how they are inter-related. You’ll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process.?.Reinforcement Learning.?discusses algorithm implementations important for reinforcement learning, including Mark
8#
發(fā)表于 2025-3-22 22:00:46 | 只看該作者
http://image.papertrans.cn/r/image/825931.jpg
9#
發(fā)表于 2025-3-23 01:34:13 | 只看該作者
https://doi.org/10.1007/978-1-4842-3285-9Reinforcement Learning; Artificial Intelligence; Python; TensorFlow; Keras; Deep Learning; Machine Learnin
10#
發(fā)表于 2025-3-23 08:43:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南开区| 乡城县| 万州区| 横峰县| 绥滨县| 曲沃县| 娄底市| 通许县| 嘉定区| 金坛市| 西昌市| 湖北省| 大安市| 洛浦县| 华亭县| 咸宁市| 柘城县| 镇沅| 迁安市| 都江堰市| 龙南县| 图片| 惠东县| 苏尼特左旗| 界首市| 阿克| 聊城市| 乌鲁木齐县| 石门县| 衡阳市| 凌云县| 长春市| 永州市| 遂川县| 磐安县| 陆河县| 石狮市| 曲松县| 句容市| 荥阳市| 汝阳县|