找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning; Richard S. Sutton Book 1992 Springer Science+Business Media New York 1992 agents.algorithms.artificial intelligenc

[復(fù)制鏈接]
樓主: 審美家
11#
發(fā)表于 2025-3-23 11:16:56 | 只看該作者
12#
發(fā)表于 2025-3-23 16:16:06 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:45 | 只看該作者
Technical Note,od for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states..This paper presents and proves in detail a convergence theorem for Q-learning based on that outlined in Watkins (1989)
14#
發(fā)表于 2025-3-24 00:56:57 | 只看該作者
15#
發(fā)表于 2025-3-24 06:20:29 | 只看該作者
Transfer of Learning by Composing Solutions of Elemental Sequential Tasks,s of reinforcement learning have focused on single tasks. In this paper I consider a class of sequential decision tasks (SDTs), called composite sequential decision tasks, formed by temporally concatenating a number of elemental sequential decision tasks. Elemental SIYI’s cannot be decomposed into s
16#
發(fā)表于 2025-3-24 07:38:28 | 只看該作者
17#
發(fā)表于 2025-3-24 10:40:33 | 只看該作者
18#
發(fā)表于 2025-3-24 14:51:25 | 只看該作者
,The Convergence of TD(λ) for General λ,it still converges, but to a different answer from the least mean squares algorithm. Finally it adapts Watkins’ theorem that Q-learning, his closely related prediction and action learning method, converges with probability one, to demonstrate this strong form of convergence for a slightly modified version of TD.
19#
發(fā)表于 2025-3-24 22:30:27 | 只看該作者
A Reinforcement Connectionist Approach to Robot Path Finding in Non-Maze-Like Environments,uts and outputs, (iii) exhibits good noise-tolerance and generalization capabilities, (iv) copes with dynamic environments, and (v) solves an instance of the path finding problem with strong performance demands.
20#
發(fā)表于 2025-3-25 02:27:05 | 只看該作者
0893-3405 ychology for almost a century, and that workhas had a very strong impact on the AI/engineering work. One could infact consider all of reinforcement learning to 978-1-4613-6608-9978-1-4615-3618-5Series ISSN 0893-3405
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红安县| 锡林浩特市| 韩城市| 乐至县| 资溪县| 毕节市| 明光市| 桂阳县| 那曲县| 武陟县| 鹤壁市| 陕西省| 克拉玛依市| 澳门| 荔波县| 建阳市| 万山特区| 榆中县| 玉溪市| 绥滨县| 永城市| 舞钢市| 西畴县| 个旧市| 盐城市| 平潭县| 湖南省| 石河子市| 区。| 云梦县| 台湾省| 紫金县| 宁夏| 天长市| 武冈市| 留坝县| 南岸区| 区。| 黄浦区| 宁海县| 弥渡县|