找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularization for Applied Inverse and Ill-Posed Problems; A Numerical Approach Bernd Hofmann (associate professor in numerical ma Textbook

[復(fù)制鏈接]
查看: 14179|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:57:11 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Regularization for Applied Inverse and Ill-Posed Problems
副標(biāo)題A Numerical Approach
編輯Bernd Hofmann (associate professor in numerical ma
視頻videohttp://file.papertrans.cn/826/825567/825567.mp4
叢書名稱Teubner-Texte zur Mathematik
圖書封面Titlebook: Regularization for Applied Inverse and Ill-Posed Problems; A Numerical Approach Bernd Hofmann (associate professor in numerical ma Textbook
出版日期Textbook 1986
關(guān)鍵詞Modellbildung; Modellierung; Optimierung
版次1
doihttps://doi.org/10.1007/978-3-322-93034-7
isbn_softcover978-3-322-93035-4
isbn_ebook978-3-322-93034-7Series ISSN 0138-502X
issn_series 0138-502X
copyrightSpringer Fachmedien Wiesbaden 1986
The information of publication is updating

書目名稱Regularization for Applied Inverse and Ill-Posed Problems影響因子(影響力)




書目名稱Regularization for Applied Inverse and Ill-Posed Problems影響因子(影響力)學(xué)科排名




書目名稱Regularization for Applied Inverse and Ill-Posed Problems網(wǎng)絡(luò)公開度




書目名稱Regularization for Applied Inverse and Ill-Posed Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Regularization for Applied Inverse and Ill-Posed Problems被引頻次




書目名稱Regularization for Applied Inverse and Ill-Posed Problems被引頻次學(xué)科排名




書目名稱Regularization for Applied Inverse and Ill-Posed Problems年度引用




書目名稱Regularization for Applied Inverse and Ill-Posed Problems年度引用學(xué)科排名




書目名稱Regularization for Applied Inverse and Ill-Posed Problems讀者反饋




書目名稱Regularization for Applied Inverse and Ill-Posed Problems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:36:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:06:54 | 只看該作者
A Unified Numerical Approach to Nonlinear Inverse Problems,e learned that identification and control problems are regularized in a unified manner. Consequently, for our classification, we only have to consider the space dimensions m and n of the discretized inverse problem and intrinsic features of the operator A and of the domain D.
地板
發(fā)表于 2025-3-22 05:20:13 | 只看該作者
Introduction,ne can be checked without implementing the expensive process or machinery hardware. Many developments in the fields of numerical mathematics, computer science, analysis, mechanics, system theory etc. have been stimulated by the requirements of practice regarding simulation experiments.
5#
發(fā)表于 2025-3-22 12:04:47 | 只看該作者
Regularization of Deterministic Discretized Inverse Problems,under consideration. The idea of dealing with this family of problems goes back to TIKHONOV [428–29]. Therefore, the method considered below in a particular fashion is called Tikhonov regularization method.
6#
發(fā)表于 2025-3-22 13:09:23 | 只看該作者
Introduction,ter simulation of real processes. The economic advantage of simulating the behaviour of physical field quantities (e.g. temperature, pressure, stress, velocity, etc.), varying in space and in time, by a digital computer is considerable. Desired properties of a process or desired reactions of a machi
7#
發(fā)表于 2025-3-22 20:51:52 | 只看該作者
A General Optimization Approach,s continuously depend upon the input data. In this Chapter 3, we only consider the strictly deterministic and non-Bayesian case (see Sec. 2,3.). The study of the present section deals with the semi-discretization model, i.e., the determination of Banach or Hilbert space elements from an m-dimensiona
8#
發(fā)表于 2025-3-22 23:41:30 | 只看該作者
Regularization of Deterministic Discretized Inverse Problems,ithin Chapter 3, auxiliary problems of minimization type (3.39) and (3–40) have been constructed, the solutions of which continuously depend on the input data. Now we present a family of well-posed optimization problems that represent stable neighbouring problems for the discretized inverse problem
9#
發(fā)表于 2025-3-23 02:16:21 | 只看該作者
Regularization of Stochastic Discretized Inverse Problems,ation method. From the numerical point of view the stochastic approach to discretized inverse problems was also of interest in the ensuing years (see PETROV [351], TURCHIN ot al. [448], FRANKLIN [130], FRIEDRICH et al. [138] and FEDOTOV [1281). In this chapter, we are going to present some main idea
10#
發(fā)表于 2025-3-23 08:49:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博客| 东山县| 阿克苏市| 库伦旗| 顺义区| 策勒县| 仙居县| 红原县| 库车县| 达州市| 龙州县| 聂拉木县| 隆林| 河间市| 甘德县| 青神县| 石棉县| 阜阳市| 土默特左旗| 庆城县| 内丘县| 九龙县| 龙门县| 鸡东县| 元朗区| 灌阳县| 津市市| 五大连池市| 玉田县| 富民县| 越西县| 会泽县| 天水市| 溧阳市| 庐江县| 通榆县| 平潭县| 南木林县| 吉木萨尔县| 崇礼县| 朔州市|