找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of the One-phase Free Boundaries; Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope

[復(fù)制鏈接]
樓主: 小巷
11#
發(fā)表于 2025-3-23 11:46:12 | 只看該作者
Non-degeneracy of the Local Minimizers,In this section we prove the non-degeneracy of the solutions to the one-phase problem (.). Our main result is the following.
12#
發(fā)表于 2025-3-23 16:34:20 | 只看該作者
Measure and Dimension of the Free Boundary,This chapter is dedicated to the measure theoretic structure of the free boundary . Ω.. The results presented here are mainly a consequence of the Lipschitz continuity and the non-degeneracy of the minimizer . (Theorem . and Proposition .).
13#
發(fā)表于 2025-3-23 20:54:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:20:56 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:26 | 只看該作者
The Weiss Monotonicity Formula and Its Consequences,This chapter is dedicated to the monotonicity formula for the boundary adjusted energy introduced by Weiss in [.]. Precisely, for every Λ?≥?0 and every .?∈?..(..).
16#
發(fā)表于 2025-3-24 09:53:36 | 只看該作者
Dimension of the Singular Set,In this chapter, we prove Theorem .. As in the original work of Weiss (see [.]), we will use the so-called Federer’s dimension reduction principle, which first appeared in [.].
17#
發(fā)表于 2025-3-24 14:14:38 | 只看該作者
18#
發(fā)表于 2025-3-24 15:42:52 | 只看該作者
An Epiperimetric Inequality Approach to the Regularity of the One-Phase Free Boundaries,Throughout this section, we will use the notation . where .. is the unit ball in ., .?≥?2 and .?∈?..(..).
19#
發(fā)表于 2025-3-24 19:42:02 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:51 | 只看該作者
978-3-031-13237-7The Editor(s) (if applicable) and The Author(s) 2023
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 20:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴安县| 班戈县| 平顺县| 安乡县| 左云县| 碌曲县| 镇雄县| 威远县| 溧水县| 满城县| 胶南市| 庆阳市| 阜新市| 天镇县| 饶河县| 肇庆市| 鄂温| 光泽县| 哈巴河县| 志丹县| 杭锦旗| 米脂县| 嘉义市| 青铜峡市| 蚌埠市| 财经| 涞水县| 高碑店市| 永康市| 新郑市| 稻城县| 金山区| 静乐县| 汪清县| 抚顺县| 梁山县| 大方县| 亚东县| 银川市| 拉萨市| 黎城县|