找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism; Leonid Mytnik,Vitali Wachtel Book 2016 The Author(s

[復(fù)制鏈接]
查看: 7592|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:01:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism
編輯Leonid Mytnik,Vitali Wachtel
視頻videohttp://file.papertrans.cn/826/825560/825560.mp4
概述The book may serve as an introductory text for a graduate course.Self-contained presentation of regularity properties of stable superprocesses and proofs of main results.Only book discussing multifrac
叢書名稱SpringerBriefs in Probability and Mathematical Statistics
圖書封面Titlebook: Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism;  Leonid Mytnik,Vitali Wachtel Book 2016 The Author(s
描述.This is the only book discussing multifractal properties of densities of stable superprocesses, containing latest achievements while also giving?the reader a comprehensive picture of the state of the art in this area. It is a self-contained presentation of regularity properties of stable?superprocesses and proofs of main results and can serve as an introductory text for a graduate course. There are many heuristic explanations of technically involved results and proofs and the reader can get a clear intuitive picture behind the results and techniques..?
出版日期Book 2016
關(guān)鍵詞Holder Continuity; Hausdorff Dimension; Multifractal Spectrum; Local Unboundedness; Superprocess; Stable
版次1
doihttps://doi.org/10.1007/978-3-319-50085-0
isbn_softcover978-3-319-50084-3
isbn_ebook978-3-319-50085-0Series ISSN 2365-4333 Series E-ISSN 2365-4341
issn_series 2365-4333
copyrightThe Author(s) 2016
The information of publication is updating

書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism影響因子(影響力)




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism影響因子(影響力)學(xué)科排名




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism網(wǎng)絡(luò)公開度




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism被引頻次




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism被引頻次學(xué)科排名




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism年度引用




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism年度引用學(xué)科排名




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism讀者反饋




書目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:06 | 只看該作者
Stochastic representation for , and description of the approach for determining regularity,Let . be a (2,?.,?.)-superprocess, that is, it satisfies the martingale problem?(.). The following lemma contains a semimartingale decomposition of . which includes stochastic integrals with respect to discontinuous martingale measures.
板凳
發(fā)表于 2025-3-22 02:41:38 | 只看該作者
地板
發(fā)表于 2025-3-22 07:45:43 | 只看該作者
Dichotomy for densities,The non-random part . ? ..(.) is differentiable. The continuity of ..(??) follows from the classical
5#
發(fā)表于 2025-3-22 09:56:06 | 只看該作者
,Pointwise H?lder exponent at a given point: proof of Theorem 1.3,Let us first give a heuristic explanation for the value of .. According to Lemmas?. and?., the maximal jump at time . and spatial point . near point ..?=?0 is of order ((. ? .)?|?.?|?)..
6#
發(fā)表于 2025-3-22 16:25:13 | 只看該作者
Elements of the proof of Theorem 1.5 and Proposition 1.6,The spectrum of singularities of .. coincides with that of .. Consequently, to prove Theorem ., we have to determine Hausdorff dimensions of the sets . and this is done in the next two sections.
7#
發(fā)表于 2025-3-22 17:54:49 | 只看該作者
Leonid Mytnik,Vitali WachtelThe book may serve as an introductory text for a graduate course.Self-contained presentation of regularity properties of stable superprocesses and proofs of main results.Only book discussing multifrac
8#
發(fā)表于 2025-3-22 23:54:40 | 只看該作者
9#
發(fā)表于 2025-3-23 02:18:16 | 只看該作者
SpringerBriefs in Probability and Mathematical Statisticshttp://image.papertrans.cn/r/image/825560.jpg
10#
發(fā)表于 2025-3-23 07:31:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邓州市| 江山市| 二连浩特市| 定州市| 浏阳市| 焦作市| 德州市| 炉霍县| 新竹市| 阳原县| 喀喇| 革吉县| 武平县| 鄂托克前旗| 布尔津县| 苍溪县| 湘潭市| 台北县| 常州市| 博乐市| 阜阳市| 英超| 苍梧县| 杭锦旗| 当雄县| 兴安盟| 雷山县| 绥化市| 兴义市| 宣化县| 井冈山市| 宁化县| 昭平县| 石林| 柳林县| 盐亭县| 天津市| 双鸭山市| 自治县| 罗城| 富平县|