找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity and Complexity in Dynamical Systems; Albert C. J. Luo Book 2012 Springer Science+Business Media, LLC 2012 Discontinuous dynamic

[復(fù)制鏈接]
查看: 37561|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:34:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Regularity and Complexity in Dynamical Systems
編輯Albert C. J. Luo
視頻videohttp://file.papertrans.cn/826/825559/825559.mp4
概述Illustrates new concepts and methodology in discontinuous dynamical systems.Uses different ideas to describe complicated dynamical systems in real worlds.Discusses the mechanism of chaos and diffusion
叢書名稱Nonlinear Systems and Complexity
圖書封面Titlebook: Regularity and Complexity in Dynamical Systems;  Albert C. J. Luo Book 2012 Springer Science+Business Media, LLC 2012 Discontinuous dynamic
描述.Regularity and Complexity in Dynamical Systems. describes periodic and chaotic behaviors in dynamical systems, including continuous, discrete, impulsive, discontinuous, and switching systems. In traditional analysis, the periodic and chaotic behaviors in continuous, nonlinear dynamical systems were extensively discussed even if unsolved. In recent years, there has been an increasing amount of interest in periodic and chaotic behaviors in discontinuous dynamical systems because such dynamical systems are prevalent in engineering. Usually, the smoothening of discontinuous dynamical system is adopted in order to use the theory of continuous dynamical systems. However, such technique cannot provide suitable results in such discontinuous systems. In this book,?an alternative way is presented to discuss the periodic and chaotic behaviors in discontinuous dynamical systems. .
出版日期Book 2012
關(guān)鍵詞Discontinuous dynamical systems; Grazing bifurcation; Impulsive systems; Mapping dynamics; Strange attra
版次1
doihttps://doi.org/10.1007/978-1-4614-1524-4
isbn_softcover978-1-4614-6168-5
isbn_ebook978-1-4614-1524-4Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

書目名稱Regularity and Complexity in Dynamical Systems影響因子(影響力)




書目名稱Regularity and Complexity in Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Regularity and Complexity in Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Regularity and Complexity in Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Regularity and Complexity in Dynamical Systems被引頻次




書目名稱Regularity and Complexity in Dynamical Systems被引頻次學(xué)科排名




書目名稱Regularity and Complexity in Dynamical Systems年度引用




書目名稱Regularity and Complexity in Dynamical Systems年度引用學(xué)科排名




書目名稱Regularity and Complexity in Dynamical Systems讀者反饋




書目名稱Regularity and Complexity in Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:22 | 只看該作者
https://doi.org/10.1007/978-1-4614-1524-4Discontinuous dynamical systems; Grazing bifurcation; Impulsive systems; Mapping dynamics; Strange attra
板凳
發(fā)表于 2025-3-22 02:18:48 | 只看該作者
978-1-4614-6168-5Springer Science+Business Media, LLC 2012
地板
發(fā)表于 2025-3-22 06:23:00 | 只看該作者
5#
發(fā)表于 2025-3-22 12:47:30 | 只看該作者
Chaos and Multifractality,resented for nonrandom and random fractals. The multifractals based on the single- and joint-multifractal measures will be presented. Multifractality of chaos generated by period-doubling bifurcation will be presented via a geometrical approach and self-similarity. Fractality of hyperbolic chaos will be discussed.
6#
發(fā)表于 2025-3-22 14:28:17 | 只看該作者
Albert C. J. LuoIllustrates new concepts and methodology in discontinuous dynamical systems.Uses different ideas to describe complicated dynamical systems in real worlds.Discusses the mechanism of chaos and diffusion
7#
發(fā)表于 2025-3-22 19:57:17 | 只看該作者
8#
發(fā)表于 2025-3-22 23:15:55 | 只看該作者
9#
發(fā)表于 2025-3-23 04:25:03 | 只看該作者
Complete Dynamics and Synchronization,map is investigated as an example. The companion and synchronization of discrete dynamical systems will be introduced, and the corresponding conditions are developed. The synchronization dynamics of Duffing and Henon maps will be discussed.
10#
發(fā)表于 2025-3-23 08:32:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐庐县| 张家界市| 黎川县| 普定县| 三穗县| 永吉县| 弥勒县| 长沙市| 红河县| 西乡县| 逊克县| 稻城县| 宜章县| 娱乐| 永修县| 肇源县| 岳池县| 宜兰县| 朝阳区| 仙游县| 沾益县| 五家渠市| 晋城| 原平市| 沅江市| 新干县| 台南市| 泰宁县| 高平市| 米易县| 涪陵区| 西贡区| 中超| 突泉县| 台北县| 大新县| 阿图什市| 南汇区| 福安市| 松江区| 南康市|