找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regression and Fitting on Manifold-valued Data; Ines Adouani,Chafik Samir Textbook 2024 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: fathom
11#
發(fā)表于 2025-3-23 10:10:01 | 只看該作者
,Spline Interpolation on?the?Special Orthogonal Group ,(,),us due to its inherent visualizability, enabling an intuitive understanding of the proposed algorithm. While . served as an excellent preliminary example to assess the concepts, the need to extend the work to more intricate manifolds becomes imperative to substantiate the complexity of the approach.
12#
發(fā)表于 2025-3-23 15:34:00 | 只看該作者
,Spline Interpolation on?Stiefel and?Grassmann Manifolds,wever, a persistent challenge in many of these applications stems from the intricate geometric structures inherent in these manifolds?[4]. As real-world applications increasingly involve non-vector data, numerous algorithms for manifold embedding and manifold learning have been introduced to address
13#
發(fā)表于 2025-3-23 19:36:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:43:25 | 只看該作者
,Spline Interpolation on the Manifold of?Probability Density Functions,ed set of observations .. Fitting a set of PDFs points constitutes a vital area of research in theoretical and computational statistics, with widespread applications in fields such as machine learning, medical imaging, computer vision, signal/video processing, and beyond
15#
發(fā)表于 2025-3-24 02:43:54 | 只看該作者
Spline Interpolation on Other Riemannian Manifolds,emannian manifolds. Specifically, we focus on two such instances: the set of symmetric and positive-definite matrices (SPD), denoted as ., and hyperbolic spaces . characterized by constant negative curvature. These nonlinear spaces find wide-ranging applications where the demand for smooth interpola
16#
發(fā)表于 2025-3-24 06:57:05 | 只看該作者
Introduction,loration extends to the generalization of the proposed Euclidean Bézier curve techniques to various examples of Riemannian manifolds. Such generalization involves an in-depth examination of the geometric properties of the Riemannian manifold.
17#
發(fā)表于 2025-3-24 11:26:22 | 只看該作者
,Spline Interpolation and?Fitting in?,ion of an innovative method for solving the interpolation problem in . through the use of . Bézier splines. This approach adeptly navigates the complexities of fitting data in multiple dimensions, ensuring the desired continuity up?to the .th order and providing a nuanced and effective solution to this intricate problem.
18#
發(fā)表于 2025-3-24 15:07:32 | 只看該作者
,Spline Interpolation on?Stiefel and?Grassmann Manifolds, these challenges. Recent efforts in this direction have focused on the development of essential geometric and statistical tools, including the Riemannian exponential map and its inverse, means, distributions, and geodesics?[5–7].
19#
發(fā)表于 2025-3-24 21:51:23 | 只看該作者
20#
發(fā)表于 2025-3-25 00:58:09 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-11-2 05:43
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
庄浪县| 竹溪县| 海原县| 望奎县| 依兰县| 邵阳市| 且末县| 阿图什市| 苗栗县| 望城县| 溧水县| 昔阳县| 天长市| 宁武县| 新营市| 澄城县| 谢通门县| 乐昌市| 徐州市| 融水| 高雄市| 石河子市| 马公市| 沂水县| 宽城| 梨树县| 香港 | 龙陵县| 桐柏县| 玉溪市| 精河县| 常山县| 威信县| 墨竹工卡县| 南皮县| 浮梁县| 淄博市| 石棉县| 博乐市| 梁河县| 图们市|