找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regional Integration in East Asia; From the Viewpoint o Masahisa Fujita (President of Institute of Develop Book 2007 Palgrave Macmillan, a

[復(fù)制鏈接]
查看: 16981|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:43:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Regional Integration in East Asia
副標題From the Viewpoint o
編輯Masahisa Fujita (President of Institute of Develop
視頻videohttp://file.papertrans.cn/826/825334/825334.mp4
叢書名稱IDE-JETRO Series
圖書封面Titlebook: Regional Integration in East Asia; From the Viewpoint o Masahisa Fujita (President of Institute of Develop Book 2007 Palgrave Macmillan, a
描述This book applies a spatial economics perspective to the understanding of the recent dynamism of the global economy, with particular focus on East Asia, and examines the prospects of regional integration in East Asia.
出版日期Book 2007
關(guān)鍵詞Asia; development; East Asia; economic geography; European integration; globalization; integration; researc
版次1
doihttps://doi.org/10.1057/9780230626607
isbn_softcover978-1-349-28522-8
isbn_ebook978-0-230-62660-7Series ISSN 2662-6314 Series E-ISSN 2662-6322
issn_series 2662-6314
copyrightPalgrave Macmillan, a division of Macmillan Publishers Limited 2007
The information of publication is updating

書目名稱Regional Integration in East Asia影響因子(影響力)




書目名稱Regional Integration in East Asia影響因子(影響力)學(xué)科排名




書目名稱Regional Integration in East Asia網(wǎng)絡(luò)公開度




書目名稱Regional Integration in East Asia網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Regional Integration in East Asia被引頻次




書目名稱Regional Integration in East Asia被引頻次學(xué)科排名




書目名稱Regional Integration in East Asia年度引用




書目名稱Regional Integration in East Asia年度引用學(xué)科排名




書目名稱Regional Integration in East Asia讀者反饋




書目名稱Regional Integration in East Asia讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:39 | 只看該作者
Masahisa Fujitatructure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually chec
板凳
發(fā)表于 2025-3-22 01:01:33 | 只看該作者
at was given by Banach [56]. This outstanding result is known as the contraction mapping principle or the Banach contraction mapping principle. The main advantage of Banach’s metric fixed point theorem is the following property: This theorem not only guarantees the existence and uniqueness of fixed
地板
發(fā)表于 2025-3-22 05:23:59 | 只看該作者
5#
發(fā)表于 2025-3-22 08:53:47 | 只看該作者
6#
發(fā)表于 2025-3-22 16:11:52 | 只看該作者
7#
發(fā)表于 2025-3-22 17:45:16 | 只看該作者
point theorem and its applications.Analyzes the recent geneThis book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accomp
8#
發(fā)表于 2025-3-22 21:46:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:18:37 | 只看該作者
Young-Han Kimchniques, and results in the rapidly-growing field of metricWritten by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important are
10#
發(fā)表于 2025-3-23 07:45:52 | 只看該作者
Bhanupong Nidhiprabhaspaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology..The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-me
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天门市| 云龙县| 徐水县| 老河口市| 晋州市| 新化县| 东阿县| 克东县| 营山县| 延川县| 溧水县| 类乌齐县| 剑川县| 阜康市| 高陵县| 青海省| 苍南县| 普格县| 石景山区| 格尔木市| 遂川县| 绵阳市| 金昌市| 当雄县| 新平| 镶黄旗| 顺昌县| 日喀则市| 哈密市| 临颍县| 修文县| 宜良县| 沙雅县| 犍为县| 宁明县| 灵川县| 邓州市| 界首市| 乌拉特中旗| 册亨县| 双桥区|