找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regelungstechnik; Mathematische Grundl Hans P. Geering Textbook 20015th edition Springer-Verlag Berlin Heidelberg 2001 Beobachter.Different

[復(fù)制鏈接]
樓主: Eisenhower
31#
發(fā)表于 2025-3-26 22:48:45 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:00 | 只看該作者
33#
發(fā)表于 2025-3-27 06:40:01 | 只看該作者
34#
發(fā)表于 2025-3-27 09:53:26 | 只看該作者
35#
發(fā)表于 2025-3-27 16:23:38 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:58 | 只看該作者
Systembetrachtungen zum Messen und Stellen, physikalische Gr??en der Regelstrecke messen. Beispiele solcher physikalischen Me?gr??en sind die Position [m] und die Geschwindigkeit [m/s] einer Koordinate einer Werkzeugmaschine, der Druck [bar] und die Temperatur [°C] an einer gewissen Stelle in einem verfahrenstechnischen Proze? usw.
37#
發(fā)表于 2025-3-27 22:12:23 | 只看該作者
38#
發(fā)表于 2025-3-28 02:48:56 | 只看該作者
Einleitung,In der Regelungstechnik befassen wir uns mit dem dynamischen Verhalten eines Systems. Das Adjektiv dynamisch deutet dabei an, da? die unabh?ngige Variable im allgemeinen die Zeit ist.
39#
發(fā)表于 2025-3-28 07:54:28 | 只看該作者
Analyse linearer zeitinvarianter Systeme im Frequenzbereich,In diesem Kapitel analysieren wir das dynamische Verhalten von Systemen, deren Dynamik durch gew?hnliche Differentialgleichungen mit konstanten Koeffizienten beschrieben wird, mit Hilfe der Laplace-Transformation. Dabei wird die unabh?ngige Variable . des Zeitbereiches durch die komplexe Variable . des Frequenzbereiches ersetzt.
40#
發(fā)表于 2025-3-28 11:04:32 | 只看該作者
Analyse linearer Systeme im Zeitbereich,In diesem Kapitel analysieren wir das dynamische Verhalten von Systemen, deren Dynamik durch gew?hnliche lineare Differentialgleichungen mit zeitlich variablen oder konstanten Koeffizienten beschrieben wird. Bei zeitvariablen Koeffizienten ist die Methode der Laplace-Transformation nicht anwendbar.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
教育| 广德县| 揭东县| 调兵山市| 开化县| 宜黄县| 健康| 嵊州市| 华阴市| 松江区| 红安县| 会泽县| 乡宁县| 湖口县| 老河口市| 定西市| 宝坻区| 交口县| 镇坪县| 施甸县| 兰考县| 绍兴市| 东台市| 鹿泉市| 治县。| 仙游县| 嘉义市| 巴马| 通城县| 壶关县| 且末县| 广德县| 镇康县| 来凤县| 香格里拉县| 祁门县| 四川省| 黄大仙区| 灌云县| 宝清县| 南召县|