找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reflection Groups and Invariant Theory; Richard Kane,Jonathan Borwein,Peter Borwein Textbook 2001 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: antihistamine
21#
發(fā)表于 2025-3-25 07:09:05 | 只看該作者
Introduction: Reflection groups and invariant theoryding its orthogonal vectors to their negatives. A . is, then, any group of transformations generated by such reflections. The purpose of this book is to study such groups and their associated invariant theory, outlining the deep and elegant theory that they possess.
22#
發(fā)表于 2025-3-25 11:28:49 | 只看該作者
23#
發(fā)表于 2025-3-25 15:08:16 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:37 | 只看該作者
Bilinear forms of Coxeter systemstion between finite reflection groups and Coxeter systems developed in §6–2. The main result of this chapter is that the bilinear form associated to a Coxeter system is always positive definite. In Chapter 8, we shall use the positive definiteness of this bilinear form to classify both finite Coxeter systems and finite Euclidean reflection groups.
25#
發(fā)表于 2025-3-25 21:41:20 | 只看該作者
Pseudo-reflectionswell as the next, is preliminary to the study of invariant theory, since it is invariant theory that motivates the introduction of pseudo-reflections. Most of our discussion of invariant theory naturally takes place in the context of pseudo-reflection groups. However, it will take several chapters before we are able to demonstrate this point.
26#
發(fā)表于 2025-3-26 00:27:09 | 只看該作者
27#
發(fā)表于 2025-3-26 06:18:32 | 只看該作者
https://doi.org/10.1007/978-1-4757-3542-0Algebraic topology; Eigenvalue; algebra; minimum; representation theory
28#
發(fā)表于 2025-3-26 10:41:11 | 只看該作者
alent, all-inclusive, metaphors. On the one hand, they are the creators and preservers of (Southern) culture, history, and society, but obsessed with their goals (or the lack of them), they can become ruthless and amoral manipulators. In this intertwining of competing and contradictory traits, some
29#
發(fā)表于 2025-3-26 13:21:05 | 只看該作者
30#
發(fā)表于 2025-3-26 18:05:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高平市| 辽宁省| 奇台县| 大连市| 兰溪市| 金平| 高要市| 桂东县| 图们市| 和平区| 随州市| 亚东县| 信丰县| 乐昌市| 微博| 嵊泗县| 伊川县| 汉源县| 崇信县| 新平| 河间市| 鹰潭市| 淮北市| 朝阳市| 潜山县| 孝义市| 阳泉市| 晴隆县| 安化县| 乐昌市| 新乐市| 东乌| 青海省| 天柱县| 综艺| 简阳市| 武义县| 监利县| 万年县| 芷江| 桦甸市|