找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Refinement in Z and Object-Z; Foundations and Adva John Derrick,Eerke A. Boiten Book 2014Latest edition Springer-Verlag London 2014 Formal

[復制鏈接]
樓主: CRUST
21#
發(fā)表于 2025-3-25 03:41:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:44:28 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:33 | 只看該作者
Refinement in Object-Zequences of the different interpretation of preconditions. We also consider how weak refinement and non-atomic refinement may be applied to Object-Z. Finally, we discuss the relation between refinement, and two other important concepts in object orientation: subtyping and inheritance.
24#
發(fā)表于 2025-3-25 19:36:26 | 只看該作者
25#
發(fā)表于 2025-3-25 22:17:22 | 只看該作者
https://doi.org/10.1007/978-1-4471-5355-9Formal Methods; Interfaces; Non-atomic Refinement; Object Orientation; Object-Z; Refinement in Object-Z; S
26#
發(fā)表于 2025-3-26 02:25:54 | 只看該作者
27#
發(fā)表于 2025-3-26 07:22:22 | 只看該作者
Data Refinement and Simulationse we look at how operations in a specification are modelled as partial relations. The application of the simulation rules to specifications with partial operations leads to the simulation rules as they are normally presented.
28#
發(fā)表于 2025-3-26 11:31:20 | 只看該作者
Refinement in Zrate the issues involved with this derivation, we first derive rules for Z ADTs without inputs and outputs, and then show the more complicated derivation in the presence of inputs and outputs. Finally, this chapter presents a collection of examples of data refinement in Z.
29#
發(fā)表于 2025-3-26 15:55:54 | 只看該作者
30#
發(fā)表于 2025-3-26 17:51:03 | 只看該作者
An Introduction to Znder consideration. In this chapter we present the notations for logic, sets and relations, the schema notation and the schema calculus, leading to the definition of an abstract data type in the “states-and-operations” style, and the first example refinement.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 14:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武冈市| 循化| 南通市| 曲麻莱县| 墨脱县| 拉孜县| 大庆市| 育儿| 合水县| 哈巴河县| 双流县| 渝中区| 城口县| 大宁县| 册亨县| 建湖县| 廉江市| 定襄县| 电白县| 渭南市| 乐亭县| 丹棱县| 静海县| 屏南县| 沙坪坝区| 芜湖县| 普宁市| 格尔木市| 湟中县| 横峰县| 祁阳县| 海原县| 礼泉县| 石景山区| 新建县| 平湖市| 闽侯县| 镇巴县| 大姚县| 新乐市| 新密市|