找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups; Friedrich Wehrung Book 2017 Springer International Publishi

[復(fù)制鏈接]
樓主: cerebral
31#
發(fā)表于 2025-3-26 20:57:40 | 只看該作者
0075-8434 t also on operator theory.Includes many examples and counterAdopting a new universal algebraic approach, this book explores and consolidates the link between Tarski‘s classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin‘s work on monoid-valu
32#
發(fā)表于 2025-3-27 04:06:16 | 只看該作者
33#
發(fā)表于 2025-3-27 07:18:25 | 只看該作者
Book 2017of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.
34#
發(fā)表于 2025-3-27 09:31:37 | 只看該作者
35#
發(fā)表于 2025-3-27 15:32:10 | 只看該作者
0075-8434 igroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.978-3-319-61598-1978-3-319-61599-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
36#
發(fā)表于 2025-3-27 19:27:03 | 只看該作者
Partial Commutative Monoids,l commutative monoid, which works then as the “enveloping monoid of .”. Although this process has been mostly studied in case . satisfies the refinement axiom (this originates in Tarski [109]), the initial part of the work does not require that axiom.
37#
發(fā)表于 2025-3-28 00:48:35 | 只看該作者
38#
發(fā)表于 2025-3-28 02:14:02 | 只看該作者
Type Theory of Special Classes of Boolean Inverse Semigroups, in which the structure of . impacts greatly the one of .. A basic illustration of this is given by the class of ., introduced in Lawson and Scott [77], which is the Boolean inverse semigroup version of the class of AF C*-algebras. Another Boolean inverse semigroup version of a class of C*-algebras,
39#
發(fā)表于 2025-3-28 07:52:48 | 只看該作者
40#
發(fā)表于 2025-3-28 10:36:52 | 只看該作者
Developments in Cardiovascular Medicinehttp://image.papertrans.cn/n/image/641965.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜章县| 马龙县| 晋中市| 当阳市| 康保县| 新野县| 洛南县| 文山县| 南丹县| 治县。| 饶河县| 无为县| 靖江市| 永吉县| 南涧| 崇文区| 广河县| 万盛区| 诸城市| 宁陵县| 丹巴县| 庆阳市| 津南区| 融水| 治多县| 惠水县| 建始县| 遂平县| 望江县| 黎城县| 宜宾市| 宿松县| 旺苍县| 上虞市| 东乡族自治县| 察雅县| 肥西县| 石楼县| 肇东市| 彭州市| 绥阳县|