找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda; M. Engeli,Th. Ginsburg,E. Stiefel Bo

[復制鏈接]
查看: 10235|回復: 35
樓主
發(fā)表于 2025-3-21 19:30:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda
編輯M. Engeli,Th. Ginsburg,E. Stiefel
視頻videohttp://file.papertrans.cn/825/824673/824673.mp4
叢書名稱Mitteilungen aus dem Institut für Angewandte Mathematik
圖書封面Titlebook: Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda;  M. Engeli,Th. Ginsburg,E. Stiefel Bo
出版日期Book 1959
關鍵詞Eigenvalue
版次1
doihttps://doi.org/10.1007/978-3-0348-7224-9
isbn_softcover978-3-0348-7226-3
isbn_ebook978-3-0348-7224-9
copyrightSpringer Basel AG 1959
The information of publication is updating

書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda影響因子(影響力)




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda影響因子(影響力)學科排名




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda網絡公開度




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda網絡公開度學科排名




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda被引頻次




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda被引頻次學科排名




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda年度引用




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda年度引用學科排名




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda讀者反饋




書目名稱Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Bounda讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:36:11 | 只看該作者
Theory of Gradient Methods,imensional space whereas the solution of (II. 1) will be denoted by — A.b. The order of the system will be denoted throughout by JV, whereas n is used for the number of different eigenvalues of ., which may be smaller than ..
板凳
發(fā)表于 2025-3-22 04:28:22 | 只看該作者
The Self-Adjoint Boundary Value Problem,oblem we may take the famous . connected with the Laplacian differential equation . = 0. This problem belongs to the broad class of socalled . problems and it seems advisable to study this class on its own merits and to develop numerical methods for solving self-adjoint problems adapted to their spe
地板
發(fā)表于 2025-3-22 07:01:46 | 只看該作者
5#
發(fā)表于 2025-3-22 11:13:16 | 只看該作者
Experiments on Gradient Methods,ssed in Chapter II) on the one hand and of the overrelaxation methods on the other hand. For the sake of comparison one example was computed according to the elimination method of Gauss-Cholesky. A valuation of the different methods will be found in chapter V.
6#
發(fā)表于 2025-3-22 15:45:49 | 只看該作者
Overrelaxation and Related Methods,computation. The gradient and Tchebycheff methods described in Chapters II and III are the counterparts of this family of relaxations, because the parameters in the relaxation formula vary from one step to the next. It will be the purpose of this chapter to contrast these two families and thus to pe
7#
發(fā)表于 2025-3-22 19:31:52 | 只看該作者
Conclusions,plained in Chapter I. The results of the computations are described and discussed in Chapter III, and the relative errors of the approximants are plotted against the number of iteration steps and computing time in Chapter III, Figures 1, 4, 7, 8.
8#
發(fā)表于 2025-3-22 22:10:42 | 只看該作者
9#
發(fā)表于 2025-3-23 02:32:45 | 只看該作者
978-3-0348-7226-3Springer Basel AG 1959
10#
發(fā)表于 2025-3-23 07:06:24 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-24 15:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安平县| 渝北区| 潼南县| 德阳市| 丁青县| 准格尔旗| 新兴县| 怀宁县| 兴海县| 乌兰浩特市| 应城市| 中牟县| 文登市| 新沂市| 罗城| 南川市| 建湖县| 奈曼旗| 宁明县| 德惠市| 八宿县| 清水河县| 宜兰市| 固始县| 轮台县| 中牟县| 剑川县| 隆安县| 邻水| 酉阳| 石景山区| 大埔县| 马尔康县| 灌云县| 图们市| 尼木县| 凤庆县| 英超| 佳木斯市| 高安市| 佳木斯市|