找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recurrence in Topological Dynamics; Furstenberg Families Ethan Akin Book 1997 Springer-Verlag US 1997 Compactification.DEX.Volume.dynamical

[復制鏈接]
查看: 33830|回復: 44
樓主
發(fā)表于 2025-3-21 17:11:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Recurrence in Topological Dynamics
副標題Furstenberg Families
編輯Ethan Akin
視頻videohttp://file.papertrans.cn/825/824336/824336.mp4
叢書名稱University Series in Mathematics
圖書封面Titlebook: Recurrence in Topological Dynamics; Furstenberg Families Ethan Akin Book 1997 Springer-Verlag US 1997 Compactification.DEX.Volume.dynamical
描述In the long run of a dynamical system, after transient phenomena have passed away, what remains is recurrence. An orbit is recurrent when it returns repeatedly to each neighborhood of its initial position. We can sharpen the concept by insisting that the returns occur with at least some prescribed frequency. For example, an orbit lies in some minimal subset if and only if it returns almost periodically to each neighborhood of the initial point. That is, each return time set is a so-called syndetic subset ofT= the positive reals (continuous time system) or T = the positive integers (discrete time system). This is a prototype for many of the results in this book. In particular, frequency is measured by membership in a family of subsets of the space modeling time, in this case the family of syndetic subsets of T. In applying dynamics to combinatorial number theory, Furstenberg introduced a large number of such families. Our first task is to describe explicitly the calculus of families implicit in Furstenberg‘s original work and in the results which have proliferated since. There are general constructions on families, e. g. , the dual of a family and the product of families. Other natu
出版日期Book 1997
關(guān)鍵詞Compactification; DEX; Volume; dynamical systems; ergodic theory; ergodicity; mixing; number theory; semigro
版次1
doihttps://doi.org/10.1007/978-1-4757-2668-8
isbn_softcover978-1-4419-3272-3
isbn_ebook978-1-4757-2668-8
copyrightSpringer-Verlag US 1997
The information of publication is updating

書目名稱Recurrence in Topological Dynamics影響因子(影響力)




書目名稱Recurrence in Topological Dynamics影響因子(影響力)學科排名




書目名稱Recurrence in Topological Dynamics網(wǎng)絡(luò)公開度




書目名稱Recurrence in Topological Dynamics網(wǎng)絡(luò)公開度學科排名




書目名稱Recurrence in Topological Dynamics被引頻次




書目名稱Recurrence in Topological Dynamics被引頻次學科排名




書目名稱Recurrence in Topological Dynamics年度引用




書目名稱Recurrence in Topological Dynamics年度引用學科排名




書目名稱Recurrence in Topological Dynamics讀者反饋




書目名稱Recurrence in Topological Dynamics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:10:00 | 只看該作者
Monoid Actions,ly continuous maps. The .,the set of uniformly continuous pseudometrics, provides an equivalent characterization. Recall that a uniformity is metrizable iff it has a countable base. Also a compact space has a unique uniformity consisting of all neighborhoods of the diagonal.
板凳
發(fā)表于 2025-3-22 02:21:50 | 只看該作者
地板
發(fā)表于 2025-3-22 08:30:26 | 只看該作者
Book 1997epeatedly to each neighborhood of its initial position. We can sharpen the concept by insisting that the returns occur with at least some prescribed frequency. For example, an orbit lies in some minimal subset if and only if it returns almost periodically to each neighborhood of the initial point. T
5#
發(fā)表于 2025-3-22 11:00:25 | 只看該作者
Introduction,t point of ., when . is a limit point of the orbit sequence {..(.) : . ∈ .} where . is the set of nonnegative integers. This means that the sequence enters every neighborhood of . infinitely often. That is, for any open set . containing ., the entrance time set .(.) = {. ∈ . : ..(.) ∈ .} is infinite
6#
發(fā)表于 2025-3-22 15:18:41 | 只看該作者
Monoid Actions, in fact the class of subspaces of compact Hausdorff spaces. It is also the class of spaces whose topology can be associated with some Hausdorff uniformity. We follow Kelley (1955) in using uniformities, distinguished collections of neighborhoods of the diagonal, to define uniform spaces and uniform
7#
發(fā)表于 2025-3-22 17:55:21 | 只看該作者
Compactifications, linear operator .: .. → .. between . spaces, the operator norm of . can be described as:.Of course by linearity . for all x ∈ ... The set .(.., ..) of all such bounded linear operators is a . space with the operator norm, and its unit ball is the set of operators of norm at most 1. Equivalently:..
8#
發(fā)表于 2025-3-22 21:24:19 | 只看該作者
9#
發(fā)表于 2025-3-23 03:59:41 | 只看該作者
Introduction,t point of ., when . is a limit point of the orbit sequence {..(.) : . ∈ .} where . is the set of nonnegative integers. This means that the sequence enters every neighborhood of . infinitely often. That is, for any open set . containing ., the entrance time set .(.) = {. ∈ . : ..(.) ∈ .} is infinite.
10#
發(fā)表于 2025-3-23 09:11:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
马龙县| 洛阳市| 行唐县| 郁南县| 星子县| 水富县| 永济市| 中宁县| 都安| 岳池县| 施秉县| 湖南省| 阳曲县| 合阳县| 清流县| 绥江县| 平泉县| 广宁县| 连城县| 达孜县| 亳州市| 龙州县| 阳东县| 景洪市| 乌审旗| 东兴市| 根河市| 盱眙县| 弥渡县| 永仁县| 清涧县| 宁强县| 安国市| 射阳县| 洮南市| 阜阳市| 舒兰市| 巴林右旗| 高雄市| 简阳市| 株洲县|