找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reconstructive Integral Geometry; Victor Palamodov Conference proceedings 2004 Springer Basel AG 2004 Fourier analyis.Fourier transform.Fu

[復(fù)制鏈接]
樓主: 加冕
31#
發(fā)表于 2025-3-27 00:48:20 | 只看該作者
32#
發(fā)表于 2025-3-27 02:17:13 | 只看該作者
Incomplete Data Problems,he volume element on . induced by the metric . The reconstruction problem is to find the function .from data of .∣. More complicated versions of (6.1) arise in applications. A weight function ω = ω ., .) (known or unknown) can appear in the integral, the “image” . can be a section of a tensor bundle
33#
發(fā)表于 2025-3-27 05:27:41 | 只看該作者
Spherical Transform and Inversion,he Euclidean n - 1-surface element. We shall also write . (a, r) = . (a, r)) where . (a, r) denotes the sphere with the centre a and radius r. Replacing .. by . Euclidean sphere .., we define the spherical transform . on the variety of spheres in ... The reconstruction problems for .. and .. are equ
34#
發(fā)表于 2025-3-27 11:07:00 | 只看該作者
Algebraic Integral Transform,1 with real coefficients in .. Write a polynomial a ∈ P. as follows:.The space is a real affine variety of dimension.Any polynomial a ∈ P. defines the real algebraic cone {a .0} in Y. Choose a coordinate system ..,., ... in Y and consider the n-sphere. Denote by A C . (Y) the intersection of this co
35#
發(fā)表于 2025-3-27 14:54:29 | 只看該作者
Flat Integral Transform,from .. . by inversion of the Radon transform in each . 1-plane in .. On the other hand, the scope of integrals .. . is redundant for reconstruction of. if . -1, since dim A.(.) = (. + 1)(. - .).. Therefore there is a large variety of inversion methods for .. . To avoid redundancy we state the reconstruction problem as follows:
36#
發(fā)表于 2025-3-27 19:07:00 | 只看該作者
Radon Transform,me hyperplane: ., ., . Thus we have two-fold covering Sn. x R —> A._. (E) where Sn. is the unit sphere in E and A._. (E) is the manifold of all hyperplanes in E. The topological space A._. (E) is homeomorphic to the projective space of dimension n without one point. This point corresponds to the infinite hyperplane in the projective closure of E.
37#
發(fā)表于 2025-3-28 00:40:11 | 只看該作者
38#
發(fā)表于 2025-3-28 03:31:36 | 只看該作者
39#
發(fā)表于 2025-3-28 06:47:43 | 只看該作者
40#
發(fā)表于 2025-3-28 11:27:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石屏县| 甘泉县| 龙海市| 怀来县| 黄浦区| 山东省| 安西县| 墨竹工卡县| 南阳市| 姚安县| 张家港市| 清流县| 沂源县| 苏尼特右旗| 荣昌县| 绥滨县| 临西县| 岐山县| 德兴市| 牙克石市| 荃湾区| 卓尼县| 乃东县| 长葛市| 东城区| 江安县| 梅州市| 阿拉善盟| 萝北县| 梅州市| 临洮县| 临漳县| 牡丹江市| 济源市| 自贡市| 清涧县| 同心县| 靖江市| 滨海县| 武山县| 亳州市|