找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems: Algorithms and their Applications; Pushpendu Kar,Monideepa Roy,Sujoy Datta Book 2024 The Editor(s) (if applicable) an

[復制鏈接]
樓主: Corrugate
11#
發(fā)表于 2025-3-23 10:51:14 | 只看該作者
978-981-97-0540-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
12#
發(fā)表于 2025-3-23 15:55:08 | 只看該作者
Recommender Systems: Algorithms and their Applications978-981-97-0538-2Series ISSN 2730-7484 Series E-ISSN 2730-7492
13#
發(fā)表于 2025-3-23 18:20:59 | 只看該作者
Steps in Building a Recommendation Engine,In this chapter, we discuss the steps one needs to keep in mind while designing an efficient recommender system. We also see what are the design parameters for rating the efficiency of a recommender system. Then the steps to build such a system are discussed along with a generic architecture.
14#
發(fā)表于 2025-3-24 01:09:04 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:27:55 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:32 | 只看該作者
2730-7484 of recommender system in healthcare monitoring and military.The book includes a thorough examination of the many types of algorithms for recommender systems, as well as a comparative analysis of them. It addresses the problem of dealing with the large amounts of data generated by the recommender sy
19#
發(fā)表于 2025-3-24 19:00:08 | 只看該作者
Collaborative Filtering and Content-Based Systems, model-based methods. The chapter discusses what are the features of and differences between the two methods. The basic components of the content-based systems are also discussed. Both the systems have their advantages and disadvantages which are also discussed here.
20#
發(fā)表于 2025-3-24 23:23:31 | 只看該作者
Big Data Behind Recommender Systems,mportant. We also see how recommender systems can benefit from using big data, what the types of data stored and what the challenges are. Finally, some examples show how exactly it is used by the recommender systems by taking the example of Twitter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
石泉县| 嘉义市| 吕梁市| 榆中县| 华坪县| 墨玉县| 永新县| 黎川县| 开封市| 轮台县| 五常市| 东兰县| 保定市| 内黄县| 澄江县| 大同市| 平潭县| 双柏县| 翁牛特旗| 石屏县| 晋城| 襄城县| 开封县| 进贤县| 当阳市| 大竹县| 乐至县| 平塘县| 台南县| 徐水县| 南部县| 璧山县| 雅江县| 鄱阳县| 西盟| 锡林郭勒盟| 屏南县| 淮南市| 马山县| 金堂县| 县级市|