找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems for Technology Enhanced Learning; Research Trends and Nikos Manouselis,Hendrik Drachsler,Olga C. Santos Book 2014 Spri

[復制鏈接]
樓主: Holter-monitor
41#
發(fā)表于 2025-3-28 16:33:16 | 只看該作者
Two Recommending Strategies to Enhance Online Presence in Personal Learning EnvironmentsWeb-based Personal Learning Environments (PLE). A PLE is a set of services selected and customized by students. Among these services, resource (either digital or human) recommendation is a crucial one. Accordingly, this chapter describes a novel approach to supporting PLEs through recommendation ser
42#
發(fā)表于 2025-3-28 19:59:04 | 只看該作者
Recommendations from Heterogeneous Sources in a Technology Enhanced Learning Ecosystem their learning. Related work shows that recommendations in TEL can support learners and that in TEL ecosystems, learners do use different platforms. We therefore pursue the goal to enable recommendations across different platforms by exploiting the synergies between them to benefit learners. Howeve
43#
發(fā)表于 2025-3-29 01:02:56 | 只看該作者
44#
發(fā)表于 2025-3-29 04:41:14 | 只看該作者
45#
發(fā)表于 2025-3-29 08:55:47 | 只看該作者
An Approach for an Affective Educational Recommendation Modeln of the TORMES methodology to specific educational settings. We report 29 recommendations elicited in 12 scenarios by applying this methodology. Moreover, a UML formalized version of the recommendations model which can describe the recommendations elicited is presented in the paper.
46#
發(fā)表于 2025-3-29 15:03:56 | 只看該作者
Book 2014actices of individuals and organizations. Information retrieval is a pivotal activity in TEL and the deployment of recommender systems has attracted increased interest during the past years..Recommendation methods, techniques and systems open an interesting new approach to facilitate and support lea
47#
發(fā)表于 2025-3-29 16:38:54 | 只看該作者
48#
發(fā)表于 2025-3-29 22:28:07 | 只看該作者
49#
發(fā)表于 2025-3-30 02:48:02 | 只看該作者
Collaborative Filtering Recommendation of Educational Content in Social Environments Utilizing Sentipolarity of an associated text, to retrieve additional explicit information from user comments when a standard rating is missing and expand tried recommendation calculation with qualitative information based on the community’s opinion before proposing the resource to another user.
50#
發(fā)表于 2025-3-30 07:44:47 | 只看該作者
Towards Automated Evaluation of Learning Resources Inside Repositoriess point out the feasibility of achieving such goal which suggests that this method can be used as a starting point for the pursuit of automatically generation of internal quality information about resources inside repositories.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 02:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
五原县| 资兴市| 鹤峰县| 临洮县| 威信县| 莱西市| 白水县| 阿拉善左旗| 余姚市| 荆州市| 阳谷县| 阿瓦提县| 海阳市| 沙河市| 大庆市| 越西县| 泉州市| 宣汉县| 垫江县| 孟州市| 普兰县| 兴山县| 宁都县| 营山县| 永胜县| 金门县| 瓮安县| 长武县| 淮滨县| 萨迦县| 兴文县| 台州市| 成都市| 迁西县| 茂名市| 凤山县| 永寿县| 衡山县| 衡阳县| 普定县| 高陵县|