找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems Handbook; Francesco Ricci,Lior Rokach,Paul B. Kantor Book 20111st edition Springer-Science+Business Media, LLC 2011 Co

[復(fù)制鏈接]
樓主: 桌前不可入
41#
發(fā)表于 2025-3-28 17:23:25 | 只看該作者
Usability Guidelines for Product Recommenders Based on Example Critiquing Researchommerce environments. In this chapter, we survey important usability research work relative to example critiquing and summarize the major results by deriving a set of usability guidelines. Our survey is focused on three key interaction activities between the user and the system: the initial preferen
42#
發(fā)表于 2025-3-28 22:04:12 | 只看該作者
Data Mining Methods for Recommender Systemsnd Support Vector Machines. We describe the .-means clustering algorithm and discuss several alternatives. We also present association rules and related algorithms for an efficient training process. In addition to introducing these techniques, we survey their uses in Recommender Systems and present cases where they have been successfully applied.
43#
發(fā)表于 2025-3-29 01:06:04 | 只看該作者
A Comprehensive Survey of Neighborhood-based Recommendation Methodsd gives practical information on how to make such decisions. Finally, the problems of sparsity and limited coverage, often observed in large commercial recommender systems, are discussed, and a few solutions to overcome these problems are presented.
44#
發(fā)表于 2025-3-29 05:19:09 | 只看該作者
45#
發(fā)表于 2025-3-29 09:29:11 | 只看該作者
Designing and Evaluating Explanations for Recommender Systemsteraction with the recommender system plays w.r.t. explanations. Finally, we describe a number of explanation styles, and how they may be related to the underlying algorithms. Examples of explanations in existing systems are mentioned throughout.
46#
發(fā)表于 2025-3-29 12:41:58 | 只看該作者
47#
發(fā)表于 2025-3-29 19:09:05 | 只看該作者
A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment are extensively analyzed by means of off-line and on-line tests, showing the effectiveness of the recommender systems: up to 30% of the recommendations are followed by a purchase, with an estimated lift factor (increase in sales) of 15%.
48#
發(fā)表于 2025-3-29 21:15:46 | 只看該作者
Matching Recommendation Technologies and Domainsknowledge come from? Different recommendation domains (books vs condominiums, for example) provide different opportunities for the gathering and application of knowledge. These considerations give rise to a mapping between domain characteristics and recommendation technologies.
49#
發(fā)表于 2025-3-30 02:01:46 | 只看該作者
50#
發(fā)表于 2025-3-30 05:39:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 大邑县| 龙井市| 岳阳市| 潮安县| 迁安市| 肥城市| 江油市| 西林县| 白玉县| 洪湖市| 濮阳县| 梁山县| 清苑县| 石林| 怀远县| 喀喇沁旗| 洪洞县| 葵青区| 祥云县| 龙海市| 砀山县| 井陉县| 武穴市| 定州市| 峨眉山市| 北京市| 博兴县| 崇州市| 太保市| 永丰县| 岑巩县| 赤城县| 兴隆县| 南开区| 宜黄县| 伊金霍洛旗| 郑州市| 临泉县| 长春市| 砀山县|