找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems Handbook; Francesco Ricci,Lior Rokach,Paul B. Kantor Book 20111st edition Springer-Science+Business Media, LLC 2011 Co

[復(fù)制鏈接]
樓主: 桌前不可入
41#
發(fā)表于 2025-3-28 17:23:25 | 只看該作者
Usability Guidelines for Product Recommenders Based on Example Critiquing Researchommerce environments. In this chapter, we survey important usability research work relative to example critiquing and summarize the major results by deriving a set of usability guidelines. Our survey is focused on three key interaction activities between the user and the system: the initial preferen
42#
發(fā)表于 2025-3-28 22:04:12 | 只看該作者
Data Mining Methods for Recommender Systemsnd Support Vector Machines. We describe the .-means clustering algorithm and discuss several alternatives. We also present association rules and related algorithms for an efficient training process. In addition to introducing these techniques, we survey their uses in Recommender Systems and present cases where they have been successfully applied.
43#
發(fā)表于 2025-3-29 01:06:04 | 只看該作者
A Comprehensive Survey of Neighborhood-based Recommendation Methodsd gives practical information on how to make such decisions. Finally, the problems of sparsity and limited coverage, often observed in large commercial recommender systems, are discussed, and a few solutions to overcome these problems are presented.
44#
發(fā)表于 2025-3-29 05:19:09 | 只看該作者
45#
發(fā)表于 2025-3-29 09:29:11 | 只看該作者
Designing and Evaluating Explanations for Recommender Systemsteraction with the recommender system plays w.r.t. explanations. Finally, we describe a number of explanation styles, and how they may be related to the underlying algorithms. Examples of explanations in existing systems are mentioned throughout.
46#
發(fā)表于 2025-3-29 12:41:58 | 只看該作者
47#
發(fā)表于 2025-3-29 19:09:05 | 只看該作者
A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment are extensively analyzed by means of off-line and on-line tests, showing the effectiveness of the recommender systems: up to 30% of the recommendations are followed by a purchase, with an estimated lift factor (increase in sales) of 15%.
48#
發(fā)表于 2025-3-29 21:15:46 | 只看該作者
Matching Recommendation Technologies and Domainsknowledge come from? Different recommendation domains (books vs condominiums, for example) provide different opportunities for the gathering and application of knowledge. These considerations give rise to a mapping between domain characteristics and recommendation technologies.
49#
發(fā)表于 2025-3-30 02:01:46 | 只看該作者
50#
發(fā)表于 2025-3-30 05:39:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岑溪市| 共和县| 临湘市| 伊春市| 海林市| 嘉禾县| 淮安市| 阿荣旗| 葵青区| 汝州市| 察隅县| 洛浦县| 宜宾县| 万载县| 阿图什市| 方正县| 筠连县| 聂拉木县| 肥乡县| 利川市| 黔西县| 蒲城县| 开鲁县| 天长市| 昌邑市| 广元市| 宜兰市| 洪洞县| 岱山县| 淮阳县| 六枝特区| 镇远县| 右玉县| 和龙市| 乌恰县| 含山县| 涿州市| 盘山县| 绥芬河市| 农安县| 嘉峪关市|