找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems Handbook; Francesco Ricci,Lior Rokach,Bracha Shapira Book 20152nd edition Springer Science+Business Media New York 201

[復(fù)制鏈接]
查看: 14856|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:12:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Recommender Systems Handbook
編輯Francesco Ricci,Lior Rokach,Bracha Shapira
視頻videohttp://file.papertrans.cn/825/824123/824123.mp4
概述Includes major updates as well as 20 new chapters.Presents detailed case studies.Shares tips and insights from renowned experts in the field
圖書封面Titlebook: Recommender Systems Handbook;  Francesco Ricci,Lior Rokach,Bracha Shapira Book 20152nd edition Springer Science+Business Media New York 201
描述This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems’ major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included.In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain recommendations, privacy in recommender systems, and semantic-based recommender systems. This multi-disciplinary handbook involves world-wide experts from diverse fields such as artificial intelligence, human-computer interaction, information retrieval, data mining, mathematics, statistics, adaptive user interfaces, decision support systems, psychology, marketing, and consumer behavior. Theoreticians and practitioners from these fields will find this reference to be an invaluable source of ideas, methods and techniques for developing more efficient, cost-effective and accurate recommender system
出版日期Book 20152nd edition
關(guān)鍵詞Collaborative filtering; Collective intelligence; Context-aware systems; Data mining; Data science; Decis
版次2
doihttps://doi.org/10.1007/978-1-4899-7637-6
isbn_softcover978-1-4899-7780-9
isbn_ebook978-1-4899-7637-6
copyrightSpringer Science+Business Media New York 2015
The information of publication is updating

書目名稱Recommender Systems Handbook影響因子(影響力)




書目名稱Recommender Systems Handbook影響因子(影響力)學(xué)科排名




書目名稱Recommender Systems Handbook網(wǎng)絡(luò)公開(kāi)度




書目名稱Recommender Systems Handbook網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Recommender Systems Handbook被引頻次




書目名稱Recommender Systems Handbook被引頻次學(xué)科排名




書目名稱Recommender Systems Handbook年度引用




書目名稱Recommender Systems Handbook年度引用學(xué)科排名




書目名稱Recommender Systems Handbook讀者反饋




書目名稱Recommender Systems Handbook讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:20:45 | 只看該作者
The Anatomy of Mobile Location-Based Recommender Systemsrecommending venues, and the techniques that researchers have used to evaluate the quality of these recommendations, using research that is sourced from a variety of fields. This chapter closes by highlighting a number of opportunities and open challenges related to building future mobile recommender systems.
地板
發(fā)表于 2025-3-22 05:57:36 | 只看該作者
Advances in Collaborative Filterings that bring competitive accuracy into neighborhood methods, which used to dominate the field. The chapter demonstrates how to utilize temporal models and implicit feedback to extend models accuracy. In passing, we include detailed descriptions of some the central methods developed for tackling the challenge of the Netflix Prize competition.
5#
發(fā)表于 2025-3-22 11:25:51 | 只看該作者
Evaluating Recommender Systems with User Experimentsments, covering the following topics: formulating hypotheses, sampling participants, creating experimental manipulations, measuring subjective constructs with questionnaires, and statistically evaluating the results.
6#
發(fā)表于 2025-3-22 15:33:39 | 只看該作者
7#
發(fā)表于 2025-3-22 19:22:53 | 只看該作者
Data Mining Methods for Recommender Systemsnd Support Vector Machines. We describe the .-means clustering algorithm and discuss several alternatives. We also present association rules and related algorithms for an efficient training process. In addition to introducing these techniques, we survey their uses in Recommender Systems and present cases where they have been successfully applied.
8#
發(fā)表于 2025-3-23 00:29:39 | 只看該作者
9#
發(fā)表于 2025-3-23 02:23:22 | 只看該作者
Book 20152nd editiontheories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included.In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems
10#
發(fā)表于 2025-3-23 05:55:03 | 只看該作者
Recommender Systems in Industry: A Netflix Case Studyrom the Netflix Prize. We will then use Netflix personalization as a case study to describe several approaches and techniques used in a real-world recommendation system. Finally, we will pinpoint what we see as some promising current research avenues and unsolved problems that deserve attention in this domain from an industry perspective.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宽甸| 彰武县| 连山| 伊川县| 丁青县| 镇远县| 陇川县| 呼和浩特市| 迭部县| 侯马市| 五大连池市| 井陉县| 娱乐| 定边县| 长治市| 五常市| 石柱| 玉门市| 若尔盖县| 龙川县| 江阴市| 互助| 麻栗坡县| 如东县| 大荔县| 比如县| 饶阳县| 奉节县| 博兴县| 阜康市| 金乡县| 台州市| 鄯善县| 同心县| 太谷县| 诸城市| 改则县| 高碑店市| 通州市| 和林格尔县| 定远县|