找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Recommender Systems Handbook; Francesco Ricci,Lior Rokach,Bracha Shapira Book 2022Latest edition Springer Science+Business Media, LLC, par

[復(fù)制鏈接]
樓主: 表范圍
51#
發(fā)表于 2025-3-30 09:33:42 | 只看該作者
Semantics and Content-Based Recommendationson . features, which are obtained by processing . or . characteristics of the items. In this setting, the adoption of semantics-aware representations can be very useful to build a more precise representation of users and items, and, in turn, to generate better recommendations. To this end, this chap
52#
發(fā)表于 2025-3-30 16:01:34 | 只看該作者
53#
發(fā)表于 2025-3-30 16:35:31 | 只看該作者
Adversarial Recommender Systems: Attack, Defense, and Advancesst them. Recently, recommender systems have been shown vulnerable to adversarial attacks that force the models to produce misleading recommendations. For instance, adversaries can attempt to push target items into high/low positions in the recommendation lists by inserting optimized fake profiles in
54#
發(fā)表于 2025-3-30 21:48:02 | 只看該作者
55#
發(fā)表于 2025-3-31 03:59:20 | 只看該作者
People-to-People Reciprocal Recommenderss they must satisfy the preferences and needs of the two parties involved in the recommendation. In contrast, the traditional items-to-people recommenders are one sided and must satisfy only the preference of the person for whom the recommendation is generated. We review the characteristics of recip
56#
發(fā)表于 2025-3-31 07:35:34 | 只看該作者
Natural Language Processing for Recommender Systemsformation on users’ preferences or items’ traits. Arguably, the most meaningful signal for recommenders is textual data, which includes examples like user-generated reviews, textual-item descriptions and even conversational interaction in natural language. Additionally, the output of a typical recom
57#
發(fā)表于 2025-3-31 11:38:32 | 只看該作者
Design and Evaluation of Cross-Domain Recommender Systemsms, reflecting a spectrum of their tastes and interests. Leveraging all the user preferences available in several systems or domains may be beneficial for generating more encompassing user models and better recommendations, e.g., through mitigating the cold-start and sparsity problems, or enabling c
58#
發(fā)表于 2025-3-31 16:34:20 | 只看該作者
59#
發(fā)表于 2025-3-31 19:35:07 | 只看該作者
Evaluating Recommender Systemsses a system designer that wishes to employ a recommendater system must choose between a set of candidate approaches. A first step towards selecting an appropriate algorithm is to decide which properties of the application to focus upon when making this choice. Indeed, recommender systems have a var
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开远市| 洮南市| 垣曲县| 马山县| 新巴尔虎右旗| 南丹县| 海南省| 信丰县| 黑水县| 织金县| 泾阳县| 沅江市| 浦城县| 迁安市| 沙坪坝区| 双流县| 溆浦县| 凤城市| 锦屏县| 武夷山市| 罗源县| 海原县| 玛纳斯县| 金沙县| 于田县| 普陀区| 巧家县| 宜兴市| 西林县| 新巴尔虎右旗| 永靖县| 华阴市| 彭水| 铁岭县| 永城市| 苍梧县| 广南县| 河池市| 确山县| 遂宁市| 麻江县|