找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems; The Textbook Charu C. Aggarwal Textbook 2016 Springer Nature Switzerland AG 2016 Collaborative filtering.Data mining.R

[復制鏈接]
樓主: 浮標
11#
發(fā)表于 2025-3-23 10:07:41 | 只看該作者
Social and Trust-Centric Recommender Systems,hough some of these methods are discussed in Chapter ., the focus of this chapter is primarily on recommending nodes and links in network settings. Social context is a much broader concept, not only including social (network) links, but also various types of side information, such as tags or folkson
12#
發(fā)表于 2025-3-23 17:13:50 | 只看該作者
Attack-Resistant Recommender Systems,com and Epinions.com. Like any other data-mining system, the effectiveness of a recommender system depends almost exclusively on the quality of the data available to it. Unfortunately, there are significant motivations for participants to submit incorrect feedback about items for personal gain or fo
13#
發(fā)表于 2025-3-23 22:03:32 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:38 | 只看該作者
An Introduction to Recommender Systems, click of a mouse. A typical methodology to provide feedback is in the form of ., in which users select numerical values from a specific evaluation system (e.g., five-star rating system) that specify their likes and dislikes of various items.
15#
發(fā)表于 2025-3-24 03:47:21 | 只看該作者
16#
發(fā)表于 2025-3-24 07:40:13 | 只看該作者
17#
發(fā)表于 2025-3-24 11:51:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:19:29 | 只看該作者
Evaluating Recommender Systems,The evaluation of collaborative filtering shares a number of similarities with that of classification. This similarity is due to the fact that collaborative filtering can be viewed as a generalization of the classification and regression modeling problem (cf. section?. of Chapter?.).
19#
發(fā)表于 2025-3-24 19:38:16 | 只看該作者
Time- and Location-Sensitive Recommender Systems,In many real scenarios, the buying and rating behaviors of customers are associated with temporal information. For example, the ratings in the Netflix Prize data set are associated with a “.” variable, and it was eventually shown?[310] how the temporal component could be used to improve the rating predictions.
20#
發(fā)表于 2025-3-25 00:16:43 | 只看該作者
Charu C. AggarwalIncludes exercises and assignments, with instructor access to a solutions manual.Illustrations throughout aid in comprehension.Provides many examples to simplify exposition and facilitate in learning.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
罗源县| 鄂尔多斯市| 庆安县| 屯门区| 南充市| 沂源县| 古丈县| 白沙| 会理县| 塔城市| 兴国县| 泰兴市| 翼城县| 甘洛县| 东莞市| 邹平县| 商都县| 西平县| 寿阳县| 昭平县| 石景山区| 阿拉善右旗| 龙口市| 平湖市| 邯郸市| 安塞县| 许昌市| 九台市| 永兴县| 福贡县| 双江| 平邑县| 濉溪县| 竹溪县| 鄱阳县| 辛集市| 延边| 阜新| 肇州县| 岢岚县| 收藏|