找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recognition of Patterns; Using the Frequencie Peter W. Becker Book 1978Latest edition Peter W. Becker, Copenhagen 1978 Patterns.classificat

[復制鏈接]
樓主: 自治
11#
發(fā)表于 2025-3-23 13:00:15 | 只看該作者
S, a Measure of Separability,rs of Class A with the probability density function f. = f.(Ξ.) from members of Class B with the density function f. = f.(Ξ.)? Seven measures of separability were mentioned, one of which was the S-measure defined by Equation 4.1. .a and σ. are the mean and standard deviation for f.. b and σ. are the
12#
發(fā)表于 2025-3-23 16:23:10 | 只看該作者
The Heuristic Search Procedure, That such new and better attributes may be found by an organized, economical, non-exhaustive search through a hierarchical structure is one of the interesting features of the FOBW-method. In general, such a search cannot be performed among pattern attributes used with other design methods. But when
13#
發(fā)表于 2025-3-23 21:04:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:39 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:11 | 只看該作者
16#
發(fā)表于 2025-3-24 07:51:12 | 只看該作者
The Heuristic Search Procedure, the FOBW-method is used, all attributes are similar in nature, they are frequencies of occurrence of binary words, and simple relationships become possible among the frequencies, as illustrated by Equations 3.4, 3.14, and 3.24.
17#
發(fā)表于 2025-3-24 11:44:21 | 只看該作者
General Electric Company‘s Electronics Laboratory, Syracuse, N.Y., U.S.A. The author would like to take this opportunity to express his gratitude to the Electronics Laboratory for its support and encouragement in this work. Thanks are in particular due to Dr. J.J. Suran for his continued interest a
18#
發(fā)表于 2025-3-24 17:22:45 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:56 | 只看該作者
20#
發(fā)表于 2025-3-25 00:16:46 | 只看該作者
Problems in the Design of Pattern Recognizers,ethod is the observed frequency of occurrence of some specified binary word. The method is therefore called: The Frequency of Occurrence of Binary Words Method, or the FOBW method. The method should also be of value to related disciplines where pattern recognition concepts are used, e.g., artificial intelligence and robotology.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东乡| 镇赉县| 花莲市| 同心县| 尖扎县| 论坛| 重庆市| 兴业县| 辰溪县| 大冶市| 翼城县| 昌江| 金阳县| 阿城市| 永清县| 眉山市| 和平区| 华蓥市| 沛县| 六盘水市| 新安县| 新乐市| 博白县| 阳山县| 长宁区| 凯里市| 吉林省| 鹤庆县| 娄烦县| 手游| 城步| 高淳县| 竹溪县| 郎溪县| 防城港市| 大同市| 元朗区| 盘锦市| 桂阳县| 广元市| 龙里县|