找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reciprocity Laws; From Euler to Eisens Franz Lemmermeyer Book 2000 Springer-Verlag Berlin Heidelberg 2000 Algebra.Elliptic functions.Gaus a

[復(fù)制鏈接]
查看: 23185|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:31:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Reciprocity Laws
副標(biāo)題From Euler to Eisens
編輯Franz Lemmermeyer
視頻videohttp://file.papertrans.cn/825/824023/824023.mp4
叢書(shū)名稱Springer Monographs in Mathematics
圖書(shū)封面Titlebook: Reciprocity Laws; From Euler to Eisens Franz Lemmermeyer Book 2000 Springer-Verlag Berlin Heidelberg 2000 Algebra.Elliptic functions.Gaus a
描述This book is about the development of reciprocity laws, starting from conjectures of Euler and discussing the contributions of Legendre, Gauss, Dirichlet, Jacobi, and Eisenstein. Readers knowledgeable in basic algebraic number theory and Galois theory will find detailed discussions of the reciprocity laws for quadratic, cubic, quartic, sextic and octic residues, rational reciprocity laws, and Eisensteins reciprocity law. An extensive bibliography will particularly appeal to readers interested in the history of reciprocity laws or in the current research in this area.
出版日期Book 2000
關(guān)鍵詞Algebra; Elliptic functions; Gaus and Jacobi sums; Reciprocity Laws; Strickelberg‘s Theorem; Zeta functio
版次1
doihttps://doi.org/10.1007/978-3-662-12893-0
isbn_softcover978-3-642-08628-1
isbn_ebook978-3-662-12893-0Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2000
The information of publication is updating

書(shū)目名稱Reciprocity Laws影響因子(影響力)




書(shū)目名稱Reciprocity Laws影響因子(影響力)學(xué)科排名




書(shū)目名稱Reciprocity Laws網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Reciprocity Laws網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Reciprocity Laws被引頻次




書(shū)目名稱Reciprocity Laws被引頻次學(xué)科排名




書(shū)目名稱Reciprocity Laws年度引用




書(shū)目名稱Reciprocity Laws年度引用學(xué)科排名




書(shū)目名稱Reciprocity Laws讀者反饋




書(shū)目名稱Reciprocity Laws讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:34:41 | 只看該作者
Reciprocity Laws978-3-662-12893-0Series ISSN 1439-7382 Series E-ISSN 2196-9922
板凳
發(fā)表于 2025-3-22 03:33:46 | 只看該作者
Cyclotomic Number Fields,This chapter is devoted to some proofs of the quadratic reciprocity law that make use of the arithmetic of cyclotomic number fields.
地板
發(fā)表于 2025-3-22 06:20:41 | 只看該作者
5#
發(fā)表于 2025-3-22 09:11:19 | 只看該作者
Quartic Reciprocity,In Chapter 5 we have already seen a lot about quartic reciprocity and its applications to rational number theory; these rational laws, however, do not suffice to solve every “rational” problem where quartic reciprocity is involved, as the following example shows.
6#
發(fā)表于 2025-3-22 15:57:18 | 只看該作者
7#
發(fā)表于 2025-3-22 17:21:28 | 只看該作者
,Gauss’s Last Entry,It is well known that Gauss recorded many of his discoveries in a diary; it ends with the ‘Last Entry’ from July 9, 1814, which reads as follows. (see [Kle]):
8#
發(fā)表于 2025-3-22 23:18:35 | 只看該作者
The Genesis of Quadratic Reciprocity,und very early on (see [Ene]) — in connection with the problem of characterizing perfect squares — the history of modern number theory starts with the editions of the books of Diophantus, in particular with the commented edition by Bachet in 1621.
9#
發(fā)表于 2025-3-23 03:37:21 | 只看該作者
10#
發(fā)表于 2025-3-23 08:54:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂林市| 黄冈市| 宁津县| 定结县| 措美县| 涪陵区| 平武县| 通州区| 济南市| 莱芜市| 盐边县| 儋州市| 名山县| 穆棱市| 辰溪县| 甘德县| 安阳县| 布拖县| 鹿邑县| 建宁县| 仙居县| 九龙城区| 崇信县| 静宁县| 永吉县| 宜兰县| 凭祥市| 二连浩特市| 峨边| 武城县| 广东省| 班玛县| 策勒县| 衢州市| 新乡县| 盱眙县| 临海市| 林甸县| 镇赉县| 洪湖市| 邹平县|