找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Toeplitz and Pseudodifferential Operators; The Nikolai Vasilevs Roland Duduchava,Israel Gohberg,Vladimir Rabinovic Book 20

[復(fù)制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 06:05:45 | 只看該作者
The Laplace-Beltrami Operator on a Rotationally Symmetric Surface,ich standard separation of variables works, it is hoped that the study of this example can nevertheless bring to light some features which may subsist in the more general framework of the calculus on compact manifolds with cusps due to V. Rabinovich et al. (1997).
22#
發(fā)表于 2025-3-25 09:55:53 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:42 | 只看該作者
24#
發(fā)表于 2025-3-25 18:29:09 | 只看該作者
On the Structure of the Eigenvectors of Large Hermitian Toeplitz Band Matrices,o infinity. The main result, which is based on certain assumptions, describes the structure of the eigenvectors in terms of the Laurent polynomial that generates the matrices up to an error term that decays exponentially fast. This result is applicable to both extreme and inner eigenvectors.
25#
發(fā)表于 2025-3-25 20:45:48 | 只看該作者
Complete Quasi-wandering Sets and Kernels of Functional Operators,tors under consideration either consist of a zero element or contain a subset isomorphic to a space .), where . has a positive Lebesgue measure. Consequently, such operators are Fredholm if and only if they are invertible.
26#
發(fā)表于 2025-3-26 02:48:47 | 只看該作者
27#
發(fā)表于 2025-3-26 06:08:32 | 只看該作者
On the Bergman Theory for Solenoidal and Irrotational Vector Fields, I: General Theory,Bergman space and the Bergman reproducing kernel; main properties of them are studied. Among other objects of our interest are: the analogues of the Bergman projections; the behavior of the Bergman theory for a given domain whenever the domain is transformed by a conformal map.
28#
發(fā)表于 2025-3-26 09:28:45 | 只看該作者
29#
發(fā)表于 2025-3-26 16:11:41 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
库车县| 五常市| 罗山县| 赣榆县| 屏边| 惠来县| 霍山县| 平原县| 永丰县| 富源县| 平泉县| 东海县| 巴楚县| 水城县| 上思县| 石首市| 荣成市| 海盐县| 宁蒗| 商南县| 盐源县| 安西县| 泸西县| 栾川县| 齐齐哈尔市| 鸡泽县| 青神县| 邵东县| 游戏| 昌宁县| 蒙城县| 南华县| 阜城县| 云阳县| 辽源市| 界首市| 苏尼特右旗| 华容县| 巧家县| 黄骅市| 白山市|