找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Toeplitz and Pseudodifferential Operators; The Nikolai Vasilevs Roland Duduchava,Israel Gohberg,Vladimir Rabinovic Book 20

[復(fù)制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 06:05:45 | 只看該作者
The Laplace-Beltrami Operator on a Rotationally Symmetric Surface,ich standard separation of variables works, it is hoped that the study of this example can nevertheless bring to light some features which may subsist in the more general framework of the calculus on compact manifolds with cusps due to V. Rabinovich et al. (1997).
22#
發(fā)表于 2025-3-25 09:55:53 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:42 | 只看該作者
24#
發(fā)表于 2025-3-25 18:29:09 | 只看該作者
On the Structure of the Eigenvectors of Large Hermitian Toeplitz Band Matrices,o infinity. The main result, which is based on certain assumptions, describes the structure of the eigenvectors in terms of the Laurent polynomial that generates the matrices up to an error term that decays exponentially fast. This result is applicable to both extreme and inner eigenvectors.
25#
發(fā)表于 2025-3-25 20:45:48 | 只看該作者
Complete Quasi-wandering Sets and Kernels of Functional Operators,tors under consideration either consist of a zero element or contain a subset isomorphic to a space .), where . has a positive Lebesgue measure. Consequently, such operators are Fredholm if and only if they are invertible.
26#
發(fā)表于 2025-3-26 02:48:47 | 只看該作者
27#
發(fā)表于 2025-3-26 06:08:32 | 只看該作者
On the Bergman Theory for Solenoidal and Irrotational Vector Fields, I: General Theory,Bergman space and the Bergman reproducing kernel; main properties of them are studied. Among other objects of our interest are: the analogues of the Bergman projections; the behavior of the Bergman theory for a given domain whenever the domain is transformed by a conformal map.
28#
發(fā)表于 2025-3-26 09:28:45 | 只看該作者
29#
發(fā)表于 2025-3-26 16:11:41 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂平县| 扬州市| 从江县| 中方县| 苏尼特右旗| 永靖县| 晋城| 柳江县| 柳河县| 竹北市| 若尔盖县| 安塞县| 弋阳县| 军事| 平武县| 繁昌县| 姚安县| 六安市| 日喀则市| 平果县| 霍城县| 临安市| 香格里拉县| 江源县| 中方县| 武平县| 谢通门县| 时尚| 秦皇岛市| 平乐县| 丁青县| 宝应县| 奉化市| 丽水市| 林州市| 凌云县| 修水县| 长宁县| 志丹县| 马尔康县| 顺义区|