找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Materials and Devices; Proceedings of ICRTM Vinod Kumar Jain,Sunita Rattan,Abhishek Verma Conference proceedings 2020 The

[復(fù)制鏈接]
樓主: affront
41#
發(fā)表于 2025-3-28 15:18:19 | 只看該作者
Adarsh Kumarith concepts from the UMLS, and split in an equally-sized training and test set. The best performance on the training set was obtained with a terminology that contained the intersection of the translated terms in combination with several post-processing steps to reduce the number of false-positive d
42#
發(fā)表于 2025-3-28 19:52:39 | 只看該作者
Ch. Kartikeshwar Patro,Aakarti Garg,Rohit Verma,Ravindra Dhar,Roman Dabrowskined by personal phrases considerably outperformed those from non-personal sentences, indicating their greater suitability for the AP task. We consider these findings could be further applied in the design of strategies for the construction of AP corpora, novel feature selection methods, as well as n
43#
發(fā)表于 2025-3-29 00:09:44 | 只看該作者
Shivani A. Kumar,H. Prakash,N. Chandra,R. Prakashned by personal phrases considerably outperformed those from non-personal sentences, indicating their greater suitability for the AP task. We consider these findings could be further applied in the design of strategies for the construction of AP corpora, novel feature selection methods, as well as n
44#
發(fā)表于 2025-3-29 06:35:19 | 只看該作者
45#
發(fā)表于 2025-3-29 10:50:23 | 只看該作者
46#
發(fā)表于 2025-3-29 15:09:45 | 只看該作者
Adarsh Kumart focus on the fine-grained recognition still lacks. We revisit the previously unfruitful neural approaches to improve recognition performance for the fine-grained entities. In this paper, we test the feasibility and quality of multitask learning (MTL) to improve fine-grained PICO recognition using
47#
發(fā)表于 2025-3-29 19:10:59 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:44 | 只看該作者
Satendra Kumar,Rohit Verma,Ravindra Dhart focus on the fine-grained recognition still lacks. We revisit the previously unfruitful neural approaches to improve recognition performance for the fine-grained entities. In this paper, we test the feasibility and quality of multitask learning (MTL) to improve fine-grained PICO recognition using
49#
發(fā)表于 2025-3-30 01:35:35 | 只看該作者
Navshad Alam,Tahira Khatoon,Vishal Singh Chandel,Rashmiduces a framework to reuse and customise existing real-life data collections. The framework outlines the eligibility criteria and the data structure requirements needed for this task. It also details the process to transform the data into a ground-truth dataset. We apply this framework to two existi
50#
發(fā)表于 2025-3-30 07:58:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 15:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乐市| 揭西县| 夹江县| 大丰市| 怀化市| 三门县| 南宁市| 井冈山市| 汕头市| 夹江县| 墨玉县| 西盟| 广灵县| 高碑店市| 尚义县| 灵石县| 隆德县| 个旧市| 广南县| 同江市| 陇西县| 新野县| 明溪县| 富平县| 新竹县| 莒南县| 夹江县| 钟祥市| 揭东县| 公安县| 仁怀市| 宕昌县| 丰都县| 攀枝花市| 同心县| 分宜县| 玛纳斯县| 耒阳市| 中山市| 仁布县| 咸宁市|