找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Learning From Data; Tutorials from the I Luca Oneto,Nicolò Navarin,Davide Anguita Book 2020 The Editor(s) (if applicable)

[復制鏈接]
查看: 8555|回復: 42
樓主
發(fā)表于 2025-3-21 17:54:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Recent Trends in Learning From Data
副標題Tutorials from the I
編輯Luca Oneto,Nicolò Navarin,Davide Anguita
視頻videohttp://file.papertrans.cn/824/823466/823466.mp4
概述Gathers tutorials from the 2019 INNS Big Data and Deep Learning Conference.Describes cutting-edge AI-based tools and applications.Offers essential guidance on the design and analysis of advanced AI-ba
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Recent Trends in Learning From Data; Tutorials from the I Luca Oneto,Nicolò Navarin,Davide Anguita Book 2020 The Editor(s) (if applicable)
描述This book offers a timely snapshot and extensive practical and theoretical insights into the topic of learning from data. Based on the tutorials presented at the INNS Big Data and Deep Learning Conference, INNSBDDL2019, held on April 16-18, 2019, in Sestri Levante, Italy, the respective chapters cover advanced neural networks, deep architectures, and supervised and reinforcement machine learning models. They describe important theoretical concepts, presenting in detail all the necessary mathematical formalizations, and offer essential guidance on their use in current big data research.?
出版日期Book 2020
關鍵詞Deep Learning for Graphs; Feedforward neural networks; Applications of tensor decomposition; Continual
版次1
doihttps://doi.org/10.1007/978-3-030-43883-8
isbn_softcover978-3-030-43885-2
isbn_ebook978-3-030-43883-8Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Recent Trends in Learning From Data影響因子(影響力)




書目名稱Recent Trends in Learning From Data影響因子(影響力)學科排名




書目名稱Recent Trends in Learning From Data網(wǎng)絡公開度




書目名稱Recent Trends in Learning From Data網(wǎng)絡公開度學科排名




書目名稱Recent Trends in Learning From Data被引頻次




書目名稱Recent Trends in Learning From Data被引頻次學科排名




書目名稱Recent Trends in Learning From Data年度引用




書目名稱Recent Trends in Learning From Data年度引用學科排名




書目名稱Recent Trends in Learning From Data讀者反饋




書目名稱Recent Trends in Learning From Data讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:34:12 | 只看該作者
Introduction,e International Neural Network Society, with the aim of representing an international meeting for researchers and other professionals in Big Data, Deep Learning and related areas. This book collects the tutorials presented at the conference which cover most of the recent trends in learning from data
板凳
發(fā)表于 2025-3-22 02:18:51 | 只看該作者
地板
發(fā)表于 2025-3-22 04:35:18 | 只看該作者
Deep Randomized Neural Networks,ic fashion. Typical examples of such systems consist of multi-layered neural network architectures where the connections to the hidden layer(s) are left untrained after initialization. Limiting the training algorithms to operate on a reduced set of weights inherently characterizes the class of Rando
5#
發(fā)表于 2025-3-22 12:26:34 | 只看該作者
6#
發(fā)表于 2025-3-22 16:18:42 | 只看該作者
Deep Learning for Graphs, a whole range of complex data representations, including hierarchical structures, graphs and networks, and giving special attention to recent deep learning models for graphs. While we provide a general introduction to the field, we explicitly focus on the neural network paradigm showing how, across
7#
發(fā)表于 2025-3-22 17:35:45 | 只看該作者
Limitations of Shallow Networks,pplications till the recent renewal of interest in deep architectures. Experimental evidence and successful applications of deep networks pose theoretical questions asking: When and why are deep networks better than shallow ones? This chapter presents some probabilistic and constructive results on l
8#
發(fā)表于 2025-3-22 21:31:16 | 只看該作者
Fairness in Machine Learning,out the ethical issues that may arise from the adoption of these technologies. ML fairness is a recently established area of machine learning that studies how to ensure that biases in the data and model inaccuracies do not lead to models that treat individuals unfavorably on the basis of characteris
9#
發(fā)表于 2025-3-23 03:45:49 | 只看該作者
Online Continual Learning on Sequences,usly encountered training samples. Learning continually in a single data pass is crucial for agents and robots operating in changing environments and required to acquire, fine-tune, and transfer increasingly complex representations from non-i.i.d. input distributions. Machine learning models that ad
10#
發(fā)表于 2025-3-23 08:07:17 | 只看該作者
Book 2020er advanced neural networks, deep architectures, and supervised and reinforcement machine learning models. They describe important theoretical concepts, presenting in detail all the necessary mathematical formalizations, and offer essential guidance on their use in current big data research.?
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
木里| 郎溪县| 尼木县| 茶陵县| 海门市| 若尔盖县| 金堂县| 塔城市| 沙雅县| 中超| 凌海市| 堆龙德庆县| 阳谷县| 余江县| 射阳县| 新晃| 河曲县| 道真| 潜山县| 和平县| 山东省| 隆化县| 赤水市| 柘城县| 大兴区| 姜堰市| 平顶山市| 宁城县| 西华县| 井研县| 河东区| 潞城市| 聊城市| 灵璧县| 福安市| 东明县| 阳原县| 冀州市| 旬邑县| 荆州市| 奉化市|