找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Algebraic Combinatorics; Hélène Barcelo,Gizem Karaali,Rosa Orellana Book 2019 The Author(s) and the Association for Women

[復(fù)制鏈接]
樓主: 嚴(yán)峻
11#
發(fā)表于 2025-3-23 13:38:44 | 只看該作者
12#
發(fā)表于 2025-3-23 17:05:23 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:54 | 只看該作者
On Positivity of Ehrhart Polynomials,cients of this polynomial Ehrhart coefficients and say a polytope is Ehrhart positive if all Ehrhart coefficients are positive (which is not true for all integral polytopes). The main purpose of this chapter is to survey interesting families of polytopes that are known to be Ehrhart positive and dis
15#
發(fā)表于 2025-3-24 06:18:07 | 只看該作者
16#
發(fā)表于 2025-3-24 07:33:22 | 只看該作者
A Tale of Centrally Symmetric Polytopes and Spheres,s. The topics discussed range from neighborliness of centrally symmetric polytopes and the Upper Bound Theorem for centrally symmetric simplicial spheres to the Generalized Lower Bound Theorem for centrally symmetric simplicial polytopes and the lower bound conjecture for centrally symmetric simplic
17#
發(fā)表于 2025-3-24 12:34:42 | 只看該作者
Crystal Constructions in Number Theory,ized by Littelmann patterns, and we give a survey of purely combinatorial constructions of prime power coefficients of Weyl group multiple Dirichlet series and metaplectic Whittaker functions using the language of crystal graphs. We explore how the branching structure of crystals manifests in these
18#
發(fā)表于 2025-3-24 18:55:00 | 只看該作者
19#
發(fā)表于 2025-3-24 21:41:32 | 只看該作者
20#
發(fā)表于 2025-3-25 02:53:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善盟| 尚志市| 锡林郭勒盟| 文水县| 霍州市| 巧家县| 房山区| 云和县| 防城港市| 盐边县| 千阳县| 故城县| 吴江市| 文昌市| 饶平县| 永善县| 德昌县| 甘孜县| 会宁县| 甘孜| 镇原县| 西乡县| 甘孜县| 迁安市| 郧西县| 化德县| 大新县| 江城| 苍梧县| 伊春市| 饶平县| 宁夏| 元谋县| 阳新县| 盐池县| 福鼎市| 昭通市| 织金县| 新龙县| 清丰县| 泸水县|