找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Progress on the Donaldson–Thomas Theory; Wall-Crossing and Re Yukinobu Toda Book 2021 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
查看: 15817|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:33:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Recent Progress on the Donaldson–Thomas Theory
副標(biāo)題Wall-Crossing and Re
編輯Yukinobu Toda
視頻videohttp://file.papertrans.cn/824/823330/823330.mp4
概述Provides an introduction of DT theory for both mathematicians and physicists.Emphasizes both the foundation and computations in the study of DT theory.Contains a mathematical theory of Gopakumar–Vafa
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Recent Progress on the Donaldson–Thomas Theory; Wall-Crossing and Re Yukinobu Toda Book 2021 The Editor(s) (if applicable) and The Author(s
描述This book is an exposition of recent progress on the Donaldson–Thomas (DT) theory. The DT invariant was introduced by R. Thomas in 1998 as a virtual counting of stable coherent sheaves on Calabi–Yau 3-folds. Later, it turned out that the DT invariants have many interesting properties and appear in several contexts such as the Gromov–Witten/Donaldson–Thomas conjecture on curve-counting theories, wall-crossing in derived categories with respect to Bridgeland stability conditions, BPS state counting in string theory, and others.?.Recently, a deeper structure of the moduli spaces of coherent sheaves on Calabi–Yau 3-folds was found through derived algebraic geometry. These moduli spaces admit shifted symplectic structures and the associated d-critical structures, which lead to refined versions of DT invariants such as cohomological DT invariants. The idea of cohomological DT invariants led to a mathematical definition of the Gopakumar–Vafa invariant, which was firstproposed by Gopakumar–Vafa in 1998, but its precise mathematical definition has not been available until recently..This book surveys the recent progress on DT invariants and related topics, with a focus on applications to cur
出版日期Book 2021
關(guān)鍵詞Donaldson-Thomas invariants; Bridgeland stability conditions; Gopakumar-Vafa invariants; Wall-crossing
版次1
doihttps://doi.org/10.1007/978-981-16-7838-7
isbn_softcover978-981-16-7837-0
isbn_ebook978-981-16-7838-7Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Recent Progress on the Donaldson–Thomas Theory影響因子(影響力)




書目名稱Recent Progress on the Donaldson–Thomas Theory影響因子(影響力)學(xué)科排名




書目名稱Recent Progress on the Donaldson–Thomas Theory網(wǎng)絡(luò)公開(kāi)度




書目名稱Recent Progress on the Donaldson–Thomas Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Recent Progress on the Donaldson–Thomas Theory被引頻次




書目名稱Recent Progress on the Donaldson–Thomas Theory被引頻次學(xué)科排名




書目名稱Recent Progress on the Donaldson–Thomas Theory年度引用




書目名稱Recent Progress on the Donaldson–Thomas Theory年度引用學(xué)科排名




書目名稱Recent Progress on the Donaldson–Thomas Theory讀者反饋




書目名稱Recent Progress on the Donaldson–Thomas Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:28:28 | 只看該作者
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/r/image/823330.jpg
地板
發(fā)表于 2025-3-22 06:00:18 | 只看該作者
https://doi.org/10.1007/978-981-16-7838-7Donaldson-Thomas invariants; Bridgeland stability conditions; Gopakumar-Vafa invariants; Wall-crossing
5#
發(fā)表于 2025-3-22 11:51:07 | 只看該作者
,Generalized Donaldson–Thomas Invariants,tion. Although the first condition is not essential, the latter condition is much more essential, and it is much more difficult to define DT invariants when there exist strictly semistable sheaves. In this chapter, we explain the construction of DT invariants without the ss=st condition by Joyce–Song, using motivic Hall algebras.
6#
發(fā)表于 2025-3-22 14:35:17 | 只看該作者
7#
發(fā)表于 2025-3-22 17:32:42 | 只看該作者
8#
發(fā)表于 2025-3-23 00:24:35 | 只看該作者
Some Future Directions,asize that the topics in this chapter are only a part of future directions chosen from the author’s preference. The topics we discuss here are not entirely out of reach at this moment, but rather ongoing research subjects which are not yet mature. We expect great progress on these topics in the coming ten years or so.
9#
發(fā)表于 2025-3-23 03:32:44 | 只看該作者
10#
發(fā)表于 2025-3-23 06:58:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰西县| 会昌县| 阳城县| 泗水县| 尼木县| 安仁县| 茌平县| 龙陵县| 太白县| 长子县| 吕梁市| 农安县| 莒南县| 七台河市| 汝阳县| 平江县| 通州市| 夏邑县| 云南省| 博野县| 宁德市| 冀州市| 普定县| 玛纳斯县| 青岛市| 凤阳县| 大埔县| 兴宁市| 银川市| 长顺县| 岳西县| 广河县| 英山县| 长治县| 黄浦区| 内江市| 焉耆| 九龙坡区| 英超| 东乌珠穆沁旗| 临汾市|