找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments of Mathematical Fluid Mechanics; Herbert Amann,Yoshikazu Giga,Masao Yamazaki Book 2016 Springer Basel 2016 Euler equat

[復(fù)制鏈接]
樓主: Retina
21#
發(fā)表于 2025-3-25 03:46:40 | 只看該作者
Existence of Weak Solutions for a Diffuse Interface Model of Power-Law Type Two-Phase Flows,lt by the authors about existence of weak solutions for diffuse interface model of power-law type two-phase flows and give a sketch of its proof. The latter part is a summary of Abels et al. (Nonlinear Anal Real World Appl 15:149–157, 2014).
22#
發(fā)表于 2025-3-25 10:02:31 | 只看該作者
23#
發(fā)表于 2025-3-25 11:47:15 | 只看該作者
24#
發(fā)表于 2025-3-25 17:20:26 | 只看該作者
25#
發(fā)表于 2025-3-25 23:47:15 | 只看該作者
Thermodynamically Consistent Modeling for Dissolution/Growth of Bubbles in an Incompressible Solvena fully compressible version, both for the liquid and the gas phase so that the entropy principle can be easily evaluated. This yields a full PDE system for a compressible two-phase fluid with mass transfer of the gaseous species. Then the passage to an incompressible solvent in the liquid phase is
26#
發(fā)表于 2025-3-26 01:03:32 | 只看該作者
27#
發(fā)表于 2025-3-26 07:06:57 | 只看該作者
Inhomogeneous Boundary Value Problems in Spaces of Higher Regularity, known for the .-realization, .?>?0, of a parameter-elliptic boundary value problem. We discuss a priori estimates and the generation of analytic semigroups for these realizations in various cases. The Banach scale method can be applied for homogeneous boundary conditions if the right-hand side sati
28#
發(fā)表于 2025-3-26 10:01:50 | 只看該作者
Local Regularity Results for the Instationary Navier-Stokes Equations Based on Besov Space Type Criributions. It is a famous open problem whether weak solutions are unique and smooth. A main step in the analysis of this problem is to show that the given weak solution is a strong one in the sense of J. Serrin, i.e., . where .?>?2, .?>?3 and .. In this review we report on recent results on this pro
29#
發(fā)表于 2025-3-26 16:07:42 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大同县| 沂水县| 邳州市| 惠水县| 呼图壁县| 佛坪县| 南涧| 长治县| 萨嘎县| 加查县| 平南县| 南城县| 泰宁县| 双城市| 乃东县| 安庆市| 塘沽区| 和政县| 建阳市| 博客| 安阳市| 临夏市| 安阳县| 南木林县| 乌兰察布市| 称多县| 昌江| 博野县| 宜州市| 西安市| 平塘县| 乌恰县| 巴里| 乳源| 灌南县| 呼玛县| 斗六市| 滁州市| 阿城市| 治多县| 沙洋县|