找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations; Xinyuan Wu,Bin Wang Book 2018 Springer Natu

[復(fù)制鏈接]
樓主: microbe
31#
發(fā)表于 2025-3-26 23:08:57 | 只看該作者
32#
發(fā)表于 2025-3-27 01:23:44 | 只看該作者
An Energy-Preserving and Symmetric Scheme for Nonlinear Hamiltonian Wave Equations,the energy of the underlying Hamiltonian wave equations. To this end, we first define and discuss the bounded operator-argument functions on the underlying domain. We then introduce an operator-variation-of-constants formula, based on which we present an energy-preserving scheme for nonlinear Hamilt
33#
發(fā)表于 2025-3-27 05:40:16 | 只看該作者
,Arbitrarily High-Order Time-Stepping Schemes for Nonlinear Klein–Gordon Equations,ry conditions. We first formulate an abstract ordinary differential equation (ODE) on a suitable infinite–dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula for the nonlinear abstract ODE. The nonlinear stability and converg
34#
發(fā)表于 2025-3-27 10:49:04 | 只看該作者
An Essential Extension of the Finite-Energy Condition for ERKN Integrators Solving Nonlinear Wave Eonlinear wave equations. We begin with an error analysis of ERKN integrators for multi-frequency highly oscillatory systems ., where . is positive semi-definite, .. These highly oscillatory problems arise from the semi-discretisation of conservative or dissipative nonlinear wave equations. The struc
35#
發(fā)表于 2025-3-27 15:20:18 | 只看該作者
Exponential Fourier Collocation Methods for First-Order Differential Equations,. We discuss in detail the connections of EFCMs with trigonometric Fourier collocation methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an extension, in a strict mathematical sense, of these existing methods in the literature.
36#
發(fā)表于 2025-3-27 20:01:51 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:56:00 | 只看該作者
39#
發(fā)表于 2025-3-28 09:29:03 | 只看該作者
40#
發(fā)表于 2025-3-28 13:54:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶川县| 保山市| 金川县| 杭锦后旗| 万载县| 荔波县| 顺平县| 开化县| 林芝县| 满城县| 城步| 襄城县| 蓝山县| 新密市| 铁岭市| 泽库县| 福贡县| 乌拉特中旗| 牙克石市| 沂水县| 山西省| 习水县| 景德镇市| 宁安市| 德令哈市| 宜阳县| 沿河| 南丰县| 咸阳市| 长丰县| 大竹县| 临城县| 普安县| 黔南| 清水河县| 莒南县| 锡林郭勒盟| 嵊泗县| 乌海市| 邯郸市| 井陉县|