找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Stochastic Methods and Applications; ICSM-5, Moscow, Russ Albert N. Shiryaev,Konstantin E. Samouylov,Dmitry Confere

[復制鏈接]
樓主: MOURN
51#
發(fā)表于 2025-3-30 11:00:38 | 只看該作者
Branching Walks with a Finite Set of?Branching Sources and Pseudo-sourcesator describing evolution of the mean numbers of particles both at an arbitrary point and on the entire lattice. The obtained results provide an explicit conditions for the exponential growth of the numbers of particles without any assumptions on jumps variance of the underlying random walk.
52#
發(fā)表于 2025-3-30 15:59:28 | 只看該作者
Random Dimension Low Sample Size Asymptoticsy two independent observations and the angle between these vectors. We generalize and refine the results constructing the second order Chebyshev-Edgeworth expansions under assumption that the data dimension is random and different scaling factors are chosen.
53#
發(fā)表于 2025-3-30 20:08:02 | 只看該作者
Mean-Square Approximation of Iterated Stochastic Integrals from Strong Exponential Milstein and Wagnple Fourier–Legendre series converging in the sense of norm in Hilbert space. In this article, we propose the optimization of the mean-square approximation procedures for iterated stochastic integrals of multiplicities 1 to 3 with respect to the infnite-dimensional .-Wiener process.
54#
發(fā)表于 2025-3-30 23:38:01 | 只看該作者
55#
發(fā)表于 2025-3-31 02:13:08 | 只看該作者
56#
發(fā)表于 2025-3-31 07:12:00 | 只看該作者
57#
發(fā)表于 2025-3-31 13:06:23 | 只看該作者
58#
發(fā)表于 2025-3-31 16:23:46 | 只看該作者
A Sequential Test for the Drift of a Brownian Motion with a Possibility to Change a Decisionon if it turns out to be wrong. The test is based on observation of the posterior mean process and makes the initial decision and, possibly, changes it later, when this process crosses certain thresholds. The solution of the problem is obtained by reducing it to joint optimal stopping and optimal switching problems.
59#
發(fā)表于 2025-3-31 18:21:21 | 只看該作者
60#
發(fā)表于 2025-3-31 22:05:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永年县| 噶尔县| 灵丘县| 樟树市| 金门县| 德昌县| 云龙县| 白水县| 都安| 西林县| 土默特右旗| 铜川市| 宝清县| 阿勒泰市| 阿克苏市| 慈利县| 汶上县| 托克逊县| 惠州市| 上饶县| 泾阳县| 汾西县| 合山市| 邯郸市| 海晏县| 垣曲县| 商城县| 绍兴县| 新兴县| 河东区| 潞城市| 鄂伦春自治旗| 乌鲁木齐县| 郎溪县| 积石山| 南投县| 梁平县| 息烽县| 金秀| 牟定县| 合水县|