找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Quantum Optics; Ramarao Inguva Book 1993 Springer Science+Business Media New York 1993 Phase.Theoretical physics.in

[復(fù)制鏈接]
樓主: mature
31#
發(fā)表于 2025-3-26 21:12:38 | 只看該作者
Supersymmetry in Quantum Optics the super- symmetric hamiltonian . is the anticommutator of two supercharges [1] .., ... In the simplest case such a hamiltonian has the diagonal structure . From this formulae it is easy to see that the spectrums of hamiltonians .... are very similar with each other. Only some lower levels may be
32#
發(fā)表于 2025-3-27 02:53:58 | 只看該作者
33#
發(fā)表于 2025-3-27 06:09:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:29:46 | 只看該作者
35#
發(fā)表于 2025-3-27 16:55:53 | 只看該作者
36#
發(fā)表于 2025-3-27 18:56:04 | 只看該作者
The One-Atom Maser and the Generation of Nonclassical Lighthas a quality factor of 3xl0.. Velocity-selected Rydberg atoms pump the maser. The field inside the cavity is measured via the fluctuations in the number of atoms leaving the cavity in the lower maser level which are up to 40% below the Poisson level. This corresponds to photon-number fluctuations 7
37#
發(fā)表于 2025-3-27 23:42:32 | 只看該作者
Observation of A Nonclassical Berry’S Phase in Quantum Opticsstrating a nonclassical Berry’s phase. This experiment involved coincidence detection of photon pairs produced in parametric fluorescence, in conjunction with a Michelson interferometer in which one member of each pair acquired a geometrical phase due to a cycle in polarization states. The experimen
38#
發(fā)表于 2025-3-28 04:41:28 | 只看該作者
Invariants and Schr?dinger Uncertainty Relation for Nonclassical Lightd correlated light for the multimode case. The distribution function of photons in squeezed light for one mode field was discussed by Schleich and Wheeler,. by Agarwal and Adam,. and by Chaturvedi and Srinivasan.. The photon distribution function for squeezed and correlated light. was discussed by D
39#
發(fā)表于 2025-3-28 10:13:03 | 只看該作者
40#
發(fā)表于 2025-3-28 12:50:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商城县| 金乡县| 桦甸市| 博罗县| 镇平县| 洪洞县| 蓬安县| 乌拉特前旗| 洮南市| 奉节县| 驻马店市| 香港| 得荣县| 大同县| 商河县| 靖西县| 祁连县| 屏边| 扎鲁特旗| 邹城市| 海宁市| 宜昌市| 随州市| 安达市| 卓资县| 五寨县| 彩票| 云南省| 布拖县| 上蔡县| 金山区| 司法| 广南县| 临澧县| 泽普县| 吉首市| 遂宁市| 将乐县| 江川县| 保亭| 宁国市|