找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Operator Theory and Its Applications; International Confer I. Gohberg,P. Lancaster,P. N. Shivakumar Conference proce

[復(fù)制鏈接]
樓主: DEBUT
11#
發(fā)表于 2025-3-23 13:09:42 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:51 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:43 | 只看該作者
,On Spectral Properties of Schr?dinger-Type Operator with Complex Potential, is relatively form-bounded with respect to (-Δ). + ?.(.) with relative bound zero (therefore . has purely discrete spectrum). In the framework of the general perturbation approach, we study the spectral asymptotics and the Riesz basisness for the generalized eigenfunctions of ..
14#
發(fā)表于 2025-3-23 22:16:57 | 只看該作者
15#
發(fā)表于 2025-3-24 05:37:45 | 只看該作者
16#
發(fā)表于 2025-3-24 07:49:48 | 只看該作者
17#
發(fā)表于 2025-3-24 11:32:03 | 只看該作者
18#
發(fā)表于 2025-3-24 18:13:06 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:14 | 只看該作者
Spline approximation methods for Wiener- Hopf operators,nd for Wiener-Hopf operators with piecewise continuous generating function. By means of localization techniques and of the two-projections-theorem, necessary and sufficient conditions for the stability of sequences in this algebra are derived.
20#
發(fā)表于 2025-3-25 02:56:32 | 只看該作者
Inertia Conditions for the Minimization of Quadratic Forms in Indefinite Metric Spaces,lutions can be established by invoking a fundamental set of inertia conditions. While these inertia conditions are automatically satisfied in a standard Hilbert space setting, which is the case of classical least-squares problems in both the deterministic and stochastic frameworks, they nevertheless
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吕梁市| 泽普县| 固始县| 五常市| 太康县| 黑河市| 股票| 河源市| 祁东县| 吉安市| 五寨县| 永靖县| 邵阳县| 荥经县| 浏阳市| 壶关县| 北碚区| 石景山区| 宾川县| 武宁县| 苗栗县| 柘荣县| 林周县| 凤台县| 美姑县| 屏边| 琼结县| 朔州市| 苏尼特右旗| 泌阳县| 浦县| 偃师市| 余干县| 西林县| 连州市| 新昌县| 孟州市| 阿拉善盟| 巴塘县| 穆棱市| 商洛市|